Python 距离(以英里为单位)到两个 gps 坐标之间的欧氏距离
Python distance in miles to euclidean distance between two gps coordinates
我正在尝试想出一个函数...
输入:以英里或公里为单位的测地距离
输出:输入距离相隔的任意两个 gps 点之间的欧氏距离
我觉得我有一些组件
import numpy as np
from numpy import linalg as LA
from geopy.distance import geodesic
loc1 = np.array([40.099993, -83.166000])
loc2 = np.array([40.148652, -82.903962])
这是这两点之间的欧氏距离
LA.norm(loc1-loc2)
#0.2665175636332336
这是这两点之间的测地距离(以英里为单位)
geodesic(loc1,loc2).miles
#14.27909749425243
我的脑子 运行 现在没电了,任何人都对我如何制作这样的函数有任何想法:
geodesic_to_euclidean(14.27909749425243)
#0.2665175636332336
如果您同意 great-circle 距离,如评论中所述,那么这应该可行。这是haversine距离:
def haversine(origin, destination, units='mi'):
# Radian deltas
origin_lat = radians(float(origin[0]))
origin_lon = radians(float(origin[1]))
destination_lat = radians(float(destination[0]))
destination_lon = radians(float(destination[1]))
lat_delta = destination_lat - origin_lat
lon_delta = destination_lon - origin_lon
# Radius of earth in meters
r = 6378127
# Haversine formula
a = sin(lat_delta / 2) ** 2 + cos(origin_lat) * \
cos(destination_lat) * sin(lon_delta / 2) ** 2
c = 2 * asin(sqrt(a))
meters_traveled = c * r
scaling_factors = {
"m:": 1,
"km": 1 / 1000,
"ft": 3.2808, # meters to feet
"mi:": 0.000621371 # meters to miles
}
return meters_traveled * scaling_factors[units]
如果您已经有了以米为单位的测地线(大圆)距离并且想要弦长,那么您可以执行以下操作
def chord(geodesic_distance):
"""
Chord length
C = 2 * r * sin(theta/2)
Arc length; which is geodesic distance in this case
AL = R * theta
therefore
C = 2 * R * sin(AL/(2*R))
"""
r = 6378127 # Radius of earth in meters
return 2 * r * sin(geodesic_distance / (2 * r))
我正在尝试想出一个函数...
输入:以英里或公里为单位的测地距离
输出:输入距离相隔的任意两个 gps 点之间的欧氏距离
我觉得我有一些组件
import numpy as np
from numpy import linalg as LA
from geopy.distance import geodesic
loc1 = np.array([40.099993, -83.166000])
loc2 = np.array([40.148652, -82.903962])
这是这两点之间的欧氏距离
LA.norm(loc1-loc2)
#0.2665175636332336
这是这两点之间的测地距离(以英里为单位)
geodesic(loc1,loc2).miles
#14.27909749425243
我的脑子 运行 现在没电了,任何人都对我如何制作这样的函数有任何想法:
geodesic_to_euclidean(14.27909749425243)
#0.2665175636332336
如果您同意 great-circle 距离,如评论中所述,那么这应该可行。这是haversine距离:
def haversine(origin, destination, units='mi'):
# Radian deltas
origin_lat = radians(float(origin[0]))
origin_lon = radians(float(origin[1]))
destination_lat = radians(float(destination[0]))
destination_lon = radians(float(destination[1]))
lat_delta = destination_lat - origin_lat
lon_delta = destination_lon - origin_lon
# Radius of earth in meters
r = 6378127
# Haversine formula
a = sin(lat_delta / 2) ** 2 + cos(origin_lat) * \
cos(destination_lat) * sin(lon_delta / 2) ** 2
c = 2 * asin(sqrt(a))
meters_traveled = c * r
scaling_factors = {
"m:": 1,
"km": 1 / 1000,
"ft": 3.2808, # meters to feet
"mi:": 0.000621371 # meters to miles
}
return meters_traveled * scaling_factors[units]
如果您已经有了以米为单位的测地线(大圆)距离并且想要弦长,那么您可以执行以下操作
def chord(geodesic_distance):
"""
Chord length
C = 2 * r * sin(theta/2)
Arc length; which is geodesic distance in this case
AL = R * theta
therefore
C = 2 * R * sin(AL/(2*R))
"""
r = 6378127 # Radius of earth in meters
return 2 * r * sin(geodesic_distance / (2 * r))