找出哪些渠道比上周的数据涨幅超过10%

To identify what are the channels that increase more than 10% against the data of last week

我有一个跨越不同时间戳的大型数据框。这是我的尝试:

all_data = []
for ws in wb.worksheets():
  rows=ws.get_all_values()
  df_all_data=pd.DataFrame.from_records(rows[1:],columns=rows[0])
  all_data.append(df_all_data)

data = pd.concat(all_data)
   

 
#Change data type
data['Year'] = pd.DatetimeIndex(data['Week']).year
data['Month'] = pd.DatetimeIndex(data['Week']).month
data['Week'] = pd.to_datetime(data['Week']).dt.date
data['Application'] = data['Application'].astype('str')
data['Function'] = data['Function'].astype('str')
data['Service'] = data['Service'].astype('str')
data['Channel'] = data['Channel'].astype('str')
data['Times of alarms'] = data['Times of alarms'].astype('int')

#Compare Channel values over weeks

subchannel_df = data.pivot_table('Times of alarms', index = 'Week', columns='Channel', aggfunc='sum').fillna(0)
subchannel_df = subchannel_df.sort_index(axis=1)

The data frame I am working on

我希望达到的目标:

  1. 在数据框末尾添加一个百分比行(最后一行与倒数第二行),排除以下情况:除以零和负百分比
  2. 显示与上周相比增长超过 10% 的频道。

几天来我一直在尝试不同的方法来实现这些目标。但是,我不会设法做到这一点。提前谢谢你。

您可以使用 shift 函数作为 SQL 中的 Lag window 函数等效于 return 上周的值,然后在行级别执行计算。为避免被零除,您可以使用 numpy where 函数,该函数等同于 SQL 中的 CASE WHEN。假设您执行名为“X”

的计算的列值
subchannel_df["XLag"] = subchannel_df["X"].shift(periods=1).fillna(0).astype('int')
subchannel_df["ChangePercentage"] = np.where(subchannel_df["XLag"] == 0, 0, (subchannel_df["X"]-subchannel_df["XLag"])/subchannel_df["XLag"])
subchannel_df["ChangePercentage"] = (subchannel_df["ChangePercentage"]*100).round().astype("int")
subchannel_df[subchannel_df["ChangePercentage"]>10]

输出:

Channel     X   XLag  ChangePercentage
Week            
2020-06-12  12  5     140
2020-11-15  15  10    50
2020-11-22  20  15    33
2020-12-13  27  16    69
2020-12-20  100 27    270