将重叠间隔与 lubridate 相结合

Combine overlapping intervals with lubridate

我希望合并 lubridate 时间间隔,这样如果它们重叠,则从内部第一个时间中获取最小值,从内部最后一个时间中获取最大值并汇总以创建一个跨越整个时间段的新时间间隔.这是一个代表:

library(lubridate, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)
library(tibble)

dat <- tibble(
  animal = rep(c("elk", "wolf", "moose"), each = 2),
  date_interval = c(
    interval(as.Date("2020-04-01"), as.Date("2020-04-05")),
    interval(as.Date("2020-04-10"), as.Date("2020-04-15")),
    interval(as.Date("2020-03-01"), as.Date("2020-04-01")),
    interval(as.Date("2020-02-15"), as.Date("2020-03-15")),
    interval(as.Date("2020-10-01"), as.Date("2020-11-01")),
    interval(as.Date("2020-09-15"), as.Date("2020-10-15"))
  )
)

dat
#> # A tibble: 6 x 2
#>   animal date_interval                 
#>   <chr>  <Interval>                    
#> 1 elk    2020-04-01 UTC--2020-04-05 UTC
#> 2 elk    2020-04-10 UTC--2020-04-15 UTC
#> 3 wolf   2020-03-01 UTC--2020-04-01 UTC
#> 4 wolf   2020-02-15 UTC--2020-03-15 UTC
#> 5 moose  2020-10-01 UTC--2020-11-01 UTC
#> 6 moose  2020-09-15 UTC--2020-10-15 UTC

好的,所以在 wolfmoose 级别中,我们有重叠的间隔。假设这是 相同 狼和驼鹿之类的东西会重复计算天数:

dat %>%
  group_by(animal) %>%
  mutate(time = time_length(date_interval)) %>%
  summarise(time_cumu = sum(time))
#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 3 x 2
#>   animal time_cumu
#>   <chr>      <dbl>
#> 1 elk       777600
#> 2 moose    5270400
#> 3 wolf     5184000

这是我想要得到的总结重叠间隔的输出类型:

tibble(
  animal = c("elk", "elk", "wolf", "moose"),
  date_interval = c(
    interval(as.Date("2020-04-01"), as.Date("2020-04-05")),
    interval(as.Date("2020-04-10"), as.Date("2020-04-15")),
    interval(as.Date("2020-02-15"), as.Date("2020-04-01")),
    interval(as.Date("2020-09-15"), as.Date("2020-11-01"))
  )
)
#> # A tibble: 4 x 2
#>   animal date_interval                 
#>   <chr>  <Interval>                    
#> 1 elk    2020-04-01 UTC--2020-04-05 UTC
#> 2 elk    2020-04-10 UTC--2020-04-15 UTC
#> 3 wolf   2020-02-15 UTC--2020-04-01 UTC
#> 4 moose  2020-09-15 UTC--2020-11-01 UTC

想法?

lubridate 中似乎没有用于将间隔向量合并为 non-overlapping 间隔向量的函数。

这是一种实现方式:

int_merge <- function(x) {
  if(length(x) == 1) return(x)
  x <- x[order(int_start(x))]
  y <- x[1]
  for(i in 2:length(x)){
    if(int_overlaps(y[length(y)], x[i]))
      y[length(y)] <- interval(start = min(int_start(c(y[length(y)], x[i]))),
                               end = max(int_end(c(y[length(y)], x[i]))))
    else
      y <- c(y, x[i])
  }
  return(y)
}

这允许你做:

dat %>% 
   group_by(animal) %>% 
   summarize(date_interval = int_merge(date_interval))

#> # A tibble: 4 x 2
#> # Groups:   animal [3]
#>   animal date_interval                 
#>   <chr>  <Interval>                    
#> 1 elk    2020-04-01 UTC--2020-04-05 UTC
#> 2 elk    2020-04-10 UTC--2020-04-15 UTC
#> 3 moose  2020-09-15 UTC--2020-11-01 UTC
#> 4 wolf   2020-02-15 UTC--2020-04-01 UTC