openCv 和 PyTorch 逆变器转换不工作
openCv and PyTorch inverser Transform not working
我有一个转换 class,它只做:
if transform is None:
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
root = os.path.join(PROJECT_ROOT_DIR, "data")
super(AttributesDataset, self).__init__()
self.data = torchvision.datasets.CelebA(
root=root,
split=split,
target_type='attr',
download=True,
transform=transform
)
从文档中,我了解到这意味着只是按比例缩小 0,1 范围内的值,即所有像素值应位于 [0,1] 之间(我也已验证这一点)。
我想可视化模型的一些输出。因此,我创建了一个简单的方法:-
for img, label in dataloader:
img.squeeze_(0)
# permute the channels. cv2 expects image in format (h, w, c)
unscaled_img = img.permute(1, 2, 0)
# move images to cpu and convert to numpy as required by cv2 library
unscaled_img = torch.round(unscaled_img * 255)
unscaled_img = unscaled_img.to(torch.uint8)
# unscaled_img = np.rint(unscaled_img * 255).astype(np.uint8)
unscaled_img = cv2.cvtColor(unscaled_img, cv2.COLOR_RGB2BGR)
cv2.imshow(unscaled_img.numpy())
但是,所有创建的图像都有异常的蓝色阴影。例如,
有人可以告诉我我到底做错了什么吗?非常感谢您的帮助
通过@LajosArpad 评论解决。罪魁祸首是
unscaled_img = cv2.cvtColor(unscaled_img, cv2.COLOR_RGB2BGR)
删除它会产生正确的值。
我有一个转换 class,它只做:
if transform is None:
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
root = os.path.join(PROJECT_ROOT_DIR, "data")
super(AttributesDataset, self).__init__()
self.data = torchvision.datasets.CelebA(
root=root,
split=split,
target_type='attr',
download=True,
transform=transform
)
从文档中,我了解到这意味着只是按比例缩小 0,1 范围内的值,即所有像素值应位于 [0,1] 之间(我也已验证这一点)。 我想可视化模型的一些输出。因此,我创建了一个简单的方法:-
for img, label in dataloader:
img.squeeze_(0)
# permute the channels. cv2 expects image in format (h, w, c)
unscaled_img = img.permute(1, 2, 0)
# move images to cpu and convert to numpy as required by cv2 library
unscaled_img = torch.round(unscaled_img * 255)
unscaled_img = unscaled_img.to(torch.uint8)
# unscaled_img = np.rint(unscaled_img * 255).astype(np.uint8)
unscaled_img = cv2.cvtColor(unscaled_img, cv2.COLOR_RGB2BGR)
cv2.imshow(unscaled_img.numpy())
但是,所有创建的图像都有异常的蓝色阴影。例如,
有人可以告诉我我到底做错了什么吗?非常感谢您的帮助
通过@LajosArpad 评论解决。罪魁祸首是
unscaled_img = cv2.cvtColor(unscaled_img, cv2.COLOR_RGB2BGR)
删除它会产生正确的值。