从每个主机线程启动一个 CUDA 流,每个流会同时 运行 吗?

Launching a CUDA stream from each host thread, will each stream run concurrently?

通过搜索我知道 cuda 支持从每个主机线程启动 CUDA 流。我的问题是,当我只使用一个线程时,测试需要 180 秒才能完成。然后我用了三个线程,测试用了430秒。他们为什么不 运行 同时?

我的GPU是Tesla K20c

下面是我的简化代码,它切断了一些变量定义和输出数据保存等,

int main()
{
    cudaSetDevice(0);
    cudaSetDeviceFlags(cudaDeviceBlockingSync);
    cudaStream_t stream1;
    cudaStream_t stream2;
    cudaStreamCreate(&stream1);
    cudaStreamCreate(&stream2);
    int ret;
    pthread_t id_1,id_2;
    ret = pthread_create(&id_1,NULL,thread_1,&stream1);
    ret = pthread_create(&id_2,NULL,thread_1,&stream2);
    pthread_join(id_1,NULL);
    pthread_join(id_2,NULL);
    cudaStreamDestroy(stream1);
    cudaStreamDestroy(stream2);
    return 0;
}

void* thread_1(void *streamno)
{ 
    char speechInFileName[1024] = "data/ori_in.bin";
    char bitOutFileName[1024] = "data/enc_out.bin";
    //make sure the bitOutFileName is exclusive
    char buf[1024];
    int nchar = snprintf(buf,1024,"%p",(char*)streamno);
    strcat(bitOutFileName,buf);

    //change the stack size limit
    size_t pvalue = 60 * 1024;
    if (cudaDeviceSetLimit(cudaLimitStackSize, pvalue) == cudaErrorInvalidValue)
        cout << "cudaErrorInvalidValue " << endl;

    Encoder_main(3, speechInFileName, bitOutFileName,(cudaStream_t*)streamno);

    pthread_exit(0);
}

int Encoder_main(int argc, char speechInFileName[], char bitOutFileName[], cudaStream_t *stream)
{
    void      *d_psEnc;
    cudaMalloc(&d_psEnc, encSizeBytes);
    cudaMemcpyAsync(d_psEnc, psEnc, encSizeBytes, cudaMemcpyHostToDevice, *stream);
    SKP_SILK_SDK_EncControlStruct *d_encControl; // Struct for input to encoder
    cudaMalloc(&d_encControl, sizeof(SKP_SILK_SDK_EncControlStruct));
    cudaMemcpyAsync(d_encControl, &encControl, sizeof(SKP_SILK_SDK_EncControlStruct), cudaMemcpyHostToDevice, *stream);
    SKP_int16 *d_in;
    cudaMalloc(&d_in, FRAME_LENGTH_MS * MAX_API_FS_KHZ * MAX_INPUT_FRAMES * sizeof(SKP_int16));
    SKP_int16 *d_nBytes;
    cudaMalloc(&d_nBytes, sizeof(SKP_int16));
    SKP_int32 *d_ret;
    cudaMalloc(&d_ret, sizeof(SKP_int32));
    SKP_uint8 *d_payload;
    cudaMalloc(&d_payload, MAX_BYTES_PER_FRAME * MAX_INPUT_FRAMES);


    while (1) {
        /* Read input from file */
        counter = fread(in, sizeof(SKP_int16), (frameSizeReadFromFile_ms * API_fs_Hz) / 1000, speechInFile);

        if ((SKP_int)counter < ((frameSizeReadFromFile_ms * API_fs_Hz) / 1000)) {
            break;
        }
        /* max payload size */
        nBytes = MAX_BYTES_PER_FRAME * MAX_INPUT_FRAMES;

        cudaMemcpyAsync(d_nBytes, &nBytes, sizeof(SKP_int16), cudaMemcpyHostToDevice, *stream);
        cudaMemcpyAsync(d_in, in, FRAME_LENGTH_MS * MAX_API_FS_KHZ * MAX_INPUT_FRAMES, cudaMemcpyHostToDevice * sizeof(SKP_int16), *stream);
        encoder_kernel <<<1, 1, 0, *stream>>>(d_psEnc, d_encControl, d_in, (SKP_int16)counter, d_payload, d_nBytes, d_ret);
        cudaMemcpyAsync(&nBytes, d_nBytes, sizeof(SKP_int16), cudaMemcpyDeviceToHost,*stream);
        cudaMemcpyAsync(&ret, d_ret, sizeof(ret), cudaMemcpyDeviceToHost,*stream);
        cudaMemcpyAsync(payload, d_payload, MAX_BYTES_PER_FRAME * MAX_INPUT_FRAMES, cudaMemcpyDeviceToHost,*stream);

        cudaStreamSynchronize(*stream);
    }

    cudaFree(d_psEnc);
    cudaFree(d_encControl);
    cudaFree(d_in);
    cudaFree(d_nBytes);
    cudaFree(d_ret);
    cudaFree(d_payload);

    return 0;
}

encoder_kernel是语音编码器函数。

感谢 Robert 和 Jez 的建议!我将我的代码更改为只打开两个流,并使用可视化分析器来显示时间线。从图像中,我有时看到两个流 运行 并发,但大多数时候没有!你能告诉我为什么吗?谢谢!

一个线程需要180s,三个线程需要430s。 430/180 = ~2.4。那不是三倍长,表明您具有一定的并发性。您能否做得比这更好取决于每个线程所做工作的细节。

通常,弄清楚正在发生什么的最好方法是 运行 通过 NVIDIA Visual Profiler 分析您的应用程序。您可以从可视化分析器界面 运行 它,或者从命令行 nvprof 分析器输出。这将显示每个 CUDA API 调用以及副本和内核。它会按流和线程拆分它们,因此可以很清楚地看到发生了什么。