Tensorflow 2 自定义损失 return nan
Tensorflow 2 custom loss return nan
我有一个模型,我使用binary_crossentropy
编译它,训练过程很顺利,打印出损失。
model = MyModel()
model.compile(optimizer="adadelta", loss="binary_crossentropy")
data1, data2 = get_random_data(4, 3) # this method return data1:(1000,4),data2:(1000,3)
model.fit([data1, data2], y, batch_size=4)
然后我写了一个自定义的损失函数,损失就变成了nan
import tensorflow.keras.backend as K
class MyModel():
...
def batch_loss(self, y_true, y_pred_batch):
bottom = K.sum(K.exp(y_pred_batch))
batch_softmax = K.exp(y_pred_batch) / bottom
batch_log_likelihood = K.log(batch_softmax)
loss = K.sum(batch_log_likelihood)
return loss
model.compile(optimizer="adadelta", loss=model.batch_loss) # change above compile code to this
我使用 batch_loss(tf.ones((1,)))
来测试我的损失函数,似乎 return 是正确的结果。
但是运行加上训练就变成了nan
,我应该从哪里开始调试呢?
型号及数据代码(需要复现者):
class MyModel(tf.keras.models.Model):
def __init__(self):
super().__init__()
self.t1A = tf.keras.layers.Dense(300, activation='relu', input_dim=1)
self.t1B = tf.keras.layers.Dense(300, activation='relu', input_dim=1)
self.t1v = tf.keras.layers.Dense(128, activation='relu')
self.t2A = tf.keras.layers.Dense(300, activation='relu')
self.t2B = tf.keras.layers.Dense(300, activation='relu')
self.t2v = tf.keras.layers.Dense(128, activation='relu')
self.out = tf.keras.layers.Dot(axes=1)
def call(self, inputs, training=None, mask=None):
u, i = inputs[0], inputs[1]
u = self.t1A(u)
u = self.t1B(u)
u = self.t1v(u)
i = self.t2A(i)
i = self.t2B(i)
i = self.t2v(i)
out = self.out([u, i])
return out
def get_random_data(user_feature_num, item_feature_num):
def get_random_ndarray(data_size, dis_list, feature_num):
data_list = []
for i in range(feature_num):
arr = np.random.randint(dis_list[i], size=data_size)
data_list.append(arr)
data = np.array(data_list)
return np.transpose(data, axes=(1, 0))
uf_dis, if_dis, data_size = [1000, 2, 10, 20], [10000, 50, 60], 1000
y = np.zeros(data_size)
for i in range(int(data_size/10)):
y[i] = 1
return get_random_ndarray(data_size, uf_dis, feature_num=user_feature_num), \
get_random_ndarray(data_size, if_dis, feature_num=item_feature_num), y
我认为你的错误是调用exp()
造成的。此函数快速增长并且 returns nan.
你的模型输出的值很大。结合函数中对 tf.exp
的调用,值会迅速增长到 nan
。您可能会考虑应用像 sigmoid
这样的激活函数来将值保持在 0 和 1 之间。
我有一个模型,我使用binary_crossentropy
编译它,训练过程很顺利,打印出损失。
model = MyModel()
model.compile(optimizer="adadelta", loss="binary_crossentropy")
data1, data2 = get_random_data(4, 3) # this method return data1:(1000,4),data2:(1000,3)
model.fit([data1, data2], y, batch_size=4)
然后我写了一个自定义的损失函数,损失就变成了nan
import tensorflow.keras.backend as K
class MyModel():
...
def batch_loss(self, y_true, y_pred_batch):
bottom = K.sum(K.exp(y_pred_batch))
batch_softmax = K.exp(y_pred_batch) / bottom
batch_log_likelihood = K.log(batch_softmax)
loss = K.sum(batch_log_likelihood)
return loss
model.compile(optimizer="adadelta", loss=model.batch_loss) # change above compile code to this
我使用 batch_loss(tf.ones((1,)))
来测试我的损失函数,似乎 return 是正确的结果。
但是运行加上训练就变成了nan
,我应该从哪里开始调试呢?
型号及数据代码(需要复现者):
class MyModel(tf.keras.models.Model):
def __init__(self):
super().__init__()
self.t1A = tf.keras.layers.Dense(300, activation='relu', input_dim=1)
self.t1B = tf.keras.layers.Dense(300, activation='relu', input_dim=1)
self.t1v = tf.keras.layers.Dense(128, activation='relu')
self.t2A = tf.keras.layers.Dense(300, activation='relu')
self.t2B = tf.keras.layers.Dense(300, activation='relu')
self.t2v = tf.keras.layers.Dense(128, activation='relu')
self.out = tf.keras.layers.Dot(axes=1)
def call(self, inputs, training=None, mask=None):
u, i = inputs[0], inputs[1]
u = self.t1A(u)
u = self.t1B(u)
u = self.t1v(u)
i = self.t2A(i)
i = self.t2B(i)
i = self.t2v(i)
out = self.out([u, i])
return out
def get_random_data(user_feature_num, item_feature_num):
def get_random_ndarray(data_size, dis_list, feature_num):
data_list = []
for i in range(feature_num):
arr = np.random.randint(dis_list[i], size=data_size)
data_list.append(arr)
data = np.array(data_list)
return np.transpose(data, axes=(1, 0))
uf_dis, if_dis, data_size = [1000, 2, 10, 20], [10000, 50, 60], 1000
y = np.zeros(data_size)
for i in range(int(data_size/10)):
y[i] = 1
return get_random_ndarray(data_size, uf_dis, feature_num=user_feature_num), \
get_random_ndarray(data_size, if_dis, feature_num=item_feature_num), y
我认为你的错误是调用exp()
造成的。此函数快速增长并且 returns nan.
你的模型输出的值很大。结合函数中对 tf.exp
的调用,值会迅速增长到 nan
。您可能会考虑应用像 sigmoid
这样的激活函数来将值保持在 0 和 1 之间。