Convert to numeric colums of a dataframe with apply = AttributeError: 'list' object has no attribute 'apply'
Convert to numeric colums of a dataframe with apply = AttributeError: 'list' object has no attribute 'apply'
我想使用 pandas.to_numeric 函数将此列表的列转换为数字,捕获错误并通过提供 errors='coerce' 作为 pandas.to_numeric 的参数强制转换:
wrong_type_columns = ['DewPointHighF', 'DewPointAvgF', 'DewPointLowF', 'HumidityHighPercent',
'HumidityAvgPercent', 'HumidityLowPercent', 'SeaLevelPressureHighInches',
'SeaLevelPressureAvgInches' ,'SeaLevelPressureLowInches', VisibilityHighMiles',
'VisibilityAvgMiles', 'VisibilityLowMiles', 'WindHighMPH', 'WindAvgMPH',
'WindGustMPH', 'PrecipitationSumInches']
我会试试这个代码:
wrong_type_columns = wrong_type_columns.apply(pd.to_numeric, errors='coerce', axis=1).astype(int)
但我得到这个错误:
AttributeError: 'list' object has no attribute 'apply'
试试这个
cols = ['DewPointHighF', 'DewPointAvgF', 'DewPointLowF', 'HumidityHighPercent',
'HumidityAvgPercent', 'HumidityLowPercent', 'SeaLevelPressureHighInches',
'SeaLevelPressureAvgInches' ,'SeaLevelPressureLowInches', 'VisibilityHighMiles',
'VisibilityAvgMiles', 'VisibilityLowMiles', 'WindHighMPH', 'WindAvgMPH',
'WindGustMPH', 'PrecipitationSumInches']
df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
看看这是否能满足您的需求。
我想使用 pandas.to_numeric 函数将此列表的列转换为数字,捕获错误并通过提供 errors='coerce' 作为 pandas.to_numeric 的参数强制转换:
wrong_type_columns = ['DewPointHighF', 'DewPointAvgF', 'DewPointLowF', 'HumidityHighPercent',
'HumidityAvgPercent', 'HumidityLowPercent', 'SeaLevelPressureHighInches',
'SeaLevelPressureAvgInches' ,'SeaLevelPressureLowInches', VisibilityHighMiles',
'VisibilityAvgMiles', 'VisibilityLowMiles', 'WindHighMPH', 'WindAvgMPH',
'WindGustMPH', 'PrecipitationSumInches']
我会试试这个代码:
wrong_type_columns = wrong_type_columns.apply(pd.to_numeric, errors='coerce', axis=1).astype(int)
但我得到这个错误:
AttributeError: 'list' object has no attribute 'apply'
试试这个
cols = ['DewPointHighF', 'DewPointAvgF', 'DewPointLowF', 'HumidityHighPercent',
'HumidityAvgPercent', 'HumidityLowPercent', 'SeaLevelPressureHighInches',
'SeaLevelPressureAvgInches' ,'SeaLevelPressureLowInches', 'VisibilityHighMiles',
'VisibilityAvgMiles', 'VisibilityLowMiles', 'WindHighMPH', 'WindAvgMPH',
'WindGustMPH', 'PrecipitationSumInches']
df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
看看这是否能满足您的需求。