测试值的最有效方法是在 pandas 中的列表中

Most efficient way of testing a value is in a list in pandas

我有一个来自 csv 的数据框,我正在测试它的各个方面。这些似乎都符合此列是否像此正则表达式或此列表中的此列。

所以我的数据框有点像这样:

import pandas as pd
df  = pd.DataFrame({'full_name': ['Mickey Mouse', 'M Mouse', 'Mickey RudeWord Mouse'], 'nationality': ['Mouseland', 'United States', 'Canada']})

我正在根据该内容生成新的列,如下所示:

def full_name_metrics(full_name):
    lst_rude_words = ['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA']
    # metric of whether full name has less than two distinct elements
    full_name_less_than_2_parts = len(full_name.split(' '))<2
    # metric of whether full_name contains an initial
    full_name_with_initial = 1 in [len(x) for x in full_name.split(' ')]
    # metric of whether name matches an offensive word
    full_name_with_offensive_word = any(item in full_name.upper().split(' ') for item in lst_rude_words)
    return pd.Series([full_name_less_than_2_parts, full_name_with_initial, full_name_with_offensive_word])

df[['full_name_less_than_2_parts', 'full_name_with_initial', 'full_name_with_offensive_word']] = df.apply(lambda x: full_name_metrics(x['full_name']), axis=1)
full_name nationality full_name_less_than_2_parts full_name_with_initial full_name_with_offensive_word
0 Mickey Mouse Mouseland False False False
1 M Mouse United States False True False
2 Mickey RudeWord Mouse Canada False False True

它有效,但对于 25k 条记录和更多此类控件,它花费的时间比我想要的要多。

那么有没有更好的方法呢?我是最好将粗鲁的单词列表作为另一个数据框,还是我找错了树?

我要逐个回答...

您所有的操作都依赖于在空白处拆分全名列,所以只做一次:

>>> stuff = df.full_name.str.split()

姓名少于两部分:

>>> df['full_name_less_than_2_parts'] = stuff.agg(len) < 2
>>> df
               full_name    nationality  full_name_less_than_2_parts
0           Mickey Mouse      Mouseland                        False
1                M Mouse  United States                        False
2  Mickey RudeWord Mouse         Canada                        False

名字只有首字母。

分解、拆分、系列;找到长度为 1 的项目;按索引分组以合并分解的系列并使用 any.

进行聚合
>>> q = (stuff.explode().agg(len) == 1)
>>> df['full_name_with_initial'] = q.groupby(q.index).agg('any')
>>> df
               full_name    nationality  full_name_less_than_2_parts  full_name_with_initial
0           Mickey Mouse      Mouseland                        False                   False
1                M Mouse  United States                        False                    True
2  Mickey RudeWord Mouse         Canada                        False                   False

检查不需要的词。

从不需要的单词列表中创建一个正则表达式模式,并将其用作 .str.contains 方法的参数。

>>> rude_words =r'|'.join( ['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA'])
>>> df['rude'] = df.full_name.str.upper().str.contains(rude_words,regex=True)
>>> df
               full_name    nationality  full_name_less_than_2_parts  full_name_with_initial   rude
0           Mickey Mouse      Mouseland                        False                   False  False
1                M Mouse  United States                        False                    True  False
2  Mickey RudeWord Mouse         Canada                        False                   False   True

把它们放在一起放在returns三个系列的一个函数中(主要是做一个时序测试)。

import pandas as pd
from timer import Timer
df = pd.DataFrame(
    {
        "full_name": ["Mickey Mouse", "M Mouse", "Mickey RudeWord Mouse"]*8000,
        "nationality": ["Mouseland", "United States", "Canada"]*8000,
    }
)
rude_words = r'|'.join(['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA'])
def f(df):
    rude_words = r'|'.join(['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA'])
    stuff = df.full_name.str.split()
    s1 = stuff.agg(len) < 2
    stuff = (stuff.explode().agg(len) == 1)
    s2 = stuff.groupby(stuff.index).agg('any')
    s3 = df.full_name.str.upper().str.contains(rude_words,regex=True)
    return s1,s2,s3

t = Timer('f(df)','from __main__ import pd,df,f')
print(t.timeit(1))    # <--- 0.12 seconds on my computer
x,y,z = f(df)
df.loc[:,'full_name_less_than_2_parts'] = x
df.loc[:,'full_name_with_initial'] = y
df.loc[:,'rude'] = z
# print(df.head(100))

Series Accessors

如果您要加快列表检查速度 - 那么 Series.str.contains 方法可能会有所帮助 -

lst_rude_words_as_str = '|'.join(lst_rude_words)
df['full_name_with_offensive_word'] = df['full_name'].str.upper().str.contains(lst_rude_words_as_str, regex=True)

以下是 %timeit 寻找我的方式:

def func_in_list(full_name):
'''Your function - just removed the other two columns.'''
    lst_rude_words = ['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA']
    full_name_with_offensive_word = any(item in full_name.upper().split(' ') for item in lst_rude_words)


%timeit df.apply(lambda x: func_in_list(x['full_name']), axis=1) #3.15 ms
%timeit df['full_name'].str.upper().str.contains(lst_rude_words_as_str, regex=True) #505 µs

编辑

我添加了之前遗漏的其他两列 - 这是完整代码

import pandas as pd    
df = pd.DataFrame({'full_name': ['Mickey Mouse', 'M Mouse', 'Mickey Rudeword Mouse']})
def df_metrics(input_df):
    input_df['full_name_less_than_2_parts'] = input_df['full_name'].str.split().map(len) < 2
    input_df['full_name_with_initial'] = input_df['full_name'].str.split(expand=True)[0].map(len) == 1
    lst_rude_words = ['RUDEWORD', 'ANOTHERRUDEWORD', 'YOUGETTHEIDEA']
    lst_rude_words_as_str = '|'.join(lst_rude_words)
    input_df['full_name_with_offensive_word'] = input_df['full_name'].str.upper().str.contains(lst_rude_words_as_str, regex=True)
    return input_df

结果

对于 3 行数据集 - 两个函数之间没有区别 -

%timeit df_metrics(df)
#3.5 ms ± 67.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit df[['full_name_less_than_2_parts', 'full_name_with_initial', 'full_name_with_offensive_word']] = df.apply(lambda x: full_name_metrics(x['full_name']), axis=1)
#3.7 ms ± 59.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

但是当我增加数据帧的大小时 - 然后有一些加速

df_big = pd.concat([df] * 10000)

%timeit df_metrics(df_big)
#135 ms ± 7.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

 %timeit df_big[['full_name_less_than_2_parts', 'full_name_with_initial', 'full_name_with_offensive_word']] = df_big.apply(lambda x: full_name_metrics(x['full_name']), axis=1) 
#11.5 s ± 173 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)