根据条件过滤数据帧行 Pandas

Filter data-frame rows based on conditions Pandas

我有一个这样的数据框df

[Date: mm/dd/yyyy]

Date           Student_id    subject     Subject_Scores
11/30/2020     1000101       Math           70
11/25/2020     1000101       Physics        75
12/02/2020     1000101       Biology        60
11/25/2020     1000101       Chemistry      49
11/25/2020     1000101       English        80
12/02/2020     1000101       Sociology      50
11/25/2020     1000102       Physics        80
11/25/2020     1000102       Math           90
12/15/2020     1000102       Chemistry      63
12/15/2020     1000103       English        71

如何获得每个 Student_id 的所有唯一 Date

输出date_df

Date           Student_id
11/30/2020     1000101
11/25/2020     1000101
12/02/2020     1000101
11/25/2020     1000102
12/15/2020     1000102
12/15/2020     1000103

还有,我需要 counts 个独特的 Dates 每个 Student_id:

Student_id   unique_date_count
1000101        3
1000102        2
1000103        1

编辑:由于唯一的子对象,我不能删除任何行,所以我怎样才能获得每个 Student_id

的唯一日期及其计数

提前感谢您的帮助!

使用DataFrame.drop_duplicates:

df1 = df[['Date','Student_id']].drop_duplicates()
print (df1)
         Date  Student_id
0  11/30/2020     1000101
1  11/25/2020     1000101
2  12/02/2020     1000101
6  11/25/2020     1000102
8  12/15/2020     1000102
9  12/15/2020     1000103

然后Series.value_counts

s = df1['Student_id'].value_counts()
print (s)
1000101    3
1000102    2
1000103    1
Name: Student_id, dtype: int64

最后如果需要 DataFrame 添加 Series.rename_axis and Series.reset_index:

df2 = s.rename_axis('Student_id').reset_index(name='unique_date_count')
print (df2)
   Student_id  unique_date_count
0     1000101                  3
1     1000102                  2
2     1000103                  1

首先,您需要做:

df_new=df.drop_duplicates()

其次,你可以做到value_counts

df_new['Student_id'].value_counts()