时间序列根据每天的价值自动标记

time series automate labeling based on value per day

我想使用点参考数据并将其转换为可进行时间序列分析的类型。 我的数据有 start_date 和 end_date,我用它来计算事件的持续时间(如果在同一天开始和 end_date,return 1。持续时间值介于 0 之间到 326).

此外,我还有另一个 pd 数据框,它是一系列扁平化的图像,大小为 x*y,其中包含(除其他外)三列:时间、lon(x)、lat(y)。

现在,如果日期落在 (start_date + 持续时间) 内,我想向后一个数据集附加一个 True 布尔值。否则,return 错误。

下面我根据所需的输出创建了一些示例数据,以可视化我想要实现的目标。有人知道如何解决这个问题吗?

接下来,我想将真实标签添加到该持续时间内的行。请参阅具有所需输出的我的数据示例。有人知道我应该如何解决这个问题吗?

pd.DataFrame({'lat':[50,60], 
          'long':[-120,-110], 
          'time':[np.datetime64('2020-01-01'),np.datetime64('2020-05-06')],
          'end_time':[np.datetime64('2020-01-04'),np.datetime64('2020-05-06')],
          'duration':[4,1]})


    lat lon     time        end_time    duration
0   50  -120    2020-01-01  2020-01-04  4
x   60  -110    2020-05-06  2020-05-06  1

所需的输出如下所示:

    lat lon     time        label
0   50  -120    2020-01-01  True
1   50  -120    2020-01-02  True
2   50  -120    2020-01-03  True
3   50  -120    2020-01-04  True
4   50  -120    2020-01-05  False
...
x-1 60  -110    2020-05-05  False
x   60  -110    2020-05-06  True
x+1 60  -110    2020-05-07  False

编辑:下面是我的数据真正结构化的示例:

 df = pd.DataFrame({'time': [np.datetime64('2002-05-18'),np.datetime64('2002-05-18'),np.datetime64('2002-05-18'),np.datetime64('2002-05-18'),np.datetime64('2002-05-18')],
                   'lon': [-116.125, -115.875, -115.625, -115.375, -115.125],
                   'lat': [55.125, 55.125, 55.125, 55.125, 55.125],
                   'out_date': [np.datetime64('2002-05-19'), None, None, None, None],
                   'duration_days': [2, None, None, None, None],
                   'Fire': [True, None, None, None, None],
                   'size_ha': [0.1, None, None, None, None],
                   'fire_count': [1, None, None, None, None]})

    time        lon         lat     out_date    duration_days   Fire    size_ha fire_count
0   2002-05-18  -116.125    55.125  2002-05-19  2.0             True    0.1     1.0
1   2002-05-18  -115.875    55.125  NaT         NaN             None    NaN     NaN
2   2002-05-18  -115.625    55.125  NaT         NaN             None    NaN     NaN
3   2002-05-18  -115.375    55.125  NaT         NaN             None    NaN     NaN
4   2002-05-18  -115.125    55.125  NaT         NaN             None    NaN     NaN

每天有42x46个lon, lat的组合,在进入第二天之前通过。在新添加的 table 中,您会看到 'time': 2002-05-18 上发生了一场森林火灾,坐标为 x,y 的持续时间为 2。我想知道如果我现在将 1932 (42x46) 行向下移动到'time': 2002-05-19 以查看更新为 True 的列 'fire'(这是一个标签)。假设我们按经度和纬度分组,数据将查看 'required output' 示例数据框中的数据。

首先将两列都转换为日期时间并将一天添加到 end_date,然后按 Index.repeat with subtraction of days and add counter values by GroupBy.cumcount with to_timedelta:

重复索引
df['time'] = pd.to_datetime(df['time'])
df['end_time'] = pd.to_datetime(df['end_time']) + pd.Timedelta(1, unit='d')

s = df.pop('end_time').sub(df['time']).dt.days
df = df.loc[df.index.repeat(s)].copy()
counter = df.groupby(level=0).cumcount()
df['time'] = df['time'].add(pd.to_timedelta(counter, unit='d'))
df = df.reset_index(drop=True)
print (df)
   lat  long       time  duration
0   50  -120 2020-01-01         4
1   50  -120 2020-01-02         4
2   50  -120 2020-01-03         4
3   50  -120 2020-01-04         4
4   60  -110 2020-05-06         1

然后由另一个 DataFrame 与左连接和 indicator 参数合并,最后比较 both:

df1 = pd.DataFrame({'time': [np.datetime64('2020-01-03'),np.datetime64('2002-05-18'),
                             np.datetime64('2002-05-18'),np.datetime64('2002-05-18'),
                             np.datetime64('2002-05-18')],
                   'lon': [-120, -115.875, -115.625, -115.375, -115.125],
                   'lat': [50, 55.125, 55.125, 55.125, 55.125],
                   'out_date': [np.datetime64('2002-05-19'), None, None, None, None],
                   'duration_days': [2, None, None, None, None],
                   'Fire': [True, None, None, None, None],
                   'size_ha': [0.1, None, None, None, None],
                   'fire_count': [1, None, None, None, None]})

df = (df1.rename(columns={'lon':'long'})
         .merge(df, 
                on=['lat','long','time'], 
                indicator='label', 
                how='left'))
df['label'] = df['label'].eq('both')
print (df)
        time     long     lat   out_date  duration_days  Fire  size_ha  \
0 2020-01-03 -120.000  50.000 2002-05-19            2.0  True      0.1   
1 2002-05-18 -115.875  55.125        NaT            NaN  None      NaN   
2 2002-05-18 -115.625  55.125        NaT            NaN  None      NaN   
3 2002-05-18 -115.375  55.125        NaT            NaN  None      NaN   
4 2002-05-18 -115.125  55.125        NaT            NaN  None      NaN   

   fire_count  duration  label  
0         1.0       4.0   True  
1         NaN       NaN  False  
2         NaN       NaN  False  
3         NaN       NaN  False  
4         NaN       NaN  False  

编辑:如果错误:

ValueError: repeats may not contain negative values

这意味着 end_time 的某些行低于 time 列:

df = pd.DataFrame({'lat':[50,60], 
          'long':[-120,-110], 
          'time':[np.datetime64('2020-01-01'),np.datetime64('2020-05-06')],
          'end_time':[np.datetime64('2020-01-04'),np.datetime64('2020-05-04')],
          'duration':[4,1]})

df['time'] = pd.to_datetime(df['time'])
df['end_time'] = pd.to_datetime(df['end_time']) 
print (df)
   lat  long       time   end_time  duration
0   50  -120 2020-01-01 2020-01-04         4
1   60  -110 2020-05-06 2020-05-04         1 end_time  < time

可能的解决方案是交换这些值:

m = df['time'].gt(df['end_time'])
d = {'end_time':'time','time':'end_time'}
df.loc[m, ['time','end_time']] = df.loc[m, ['end_time','time']].rename(columns=d)

df['end_time'] = df['end_time']  + pd.Timedelta(1, unit='d')
print (df)
   lat  long       time   end_time  duration
0   50  -120 2020-01-01 2020-01-05         4
1   60  -110 2020-05-04 2020-05-07         1

然后使用上面的解决方案:

s = df.pop('end_time').sub(df['time']).dt.days
df = df.loc[df.index.repeat(s)].copy()
counter = df.groupby(level=0).cumcount()
df['time'] = df['time'].add(pd.to_timedelta(counter, unit='d'))
df = df.reset_index(drop=True)
print (df)
   lat  long       time  duration
0   50  -120 2020-01-01         4
1   50  -120 2020-01-02         4
2   50  -120 2020-01-03         4
3   50  -120 2020-01-04         4
4   60  -110 2020-05-04         1
5   60  -110 2020-05-05         1
6   60  -110 2020-05-06         1