AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'set_global_policy'
AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'set_global_policy'
我需要添加mixed precision to my code in order to save some memory. Specifically, I have tried adding mixed precision policy near line 27 in https://github.com/nimRobotics/google-research/blob/master/ravens/train.py,下面是代码摘录
import argparse
import datetime
import os
import numpy as np
from ravens import agents
from ravens import Dataset
import tensorflow as tf
# tf.keras.mixed_precision.set_global_policy('mixed_float16')
# OR
# policy = tf.keras.mixed_precision.Policy('mixed_float16')
# mixed_precision.set_global_policy(policy)
这两种方法都会导致如下所示的属性错误,我使用的是 Google Colab with TF 2.3.0
使用 tf.keras.mixed_precision.set_global_policy('mixed_float16')
结果
Traceback (most recent call last):
File "train.py", line 28, in <module>
tf.keras.mixed_precision.set_global_policy('mixed_float16')
AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'set_global_policy'
正在使用
policy = tf.keras.mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)
结果
Traceback (most recent call last):
File "train.py", line 29, in <module>
policy = tf.keras.mixed_precision.Policy('mixed_float16')
AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'Policy'
任何帮助或提示将不胜感激!
对于 tf < 2.4
你应该使用 mixed precision 的实验包。
tf.keras.mixed_precision.experimental.Policy(
name, loss_scale='auto'
)
例如,在 tf 2.3
policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
tf.keras.mixed_precision.experimental.set_policy(policy)
并在 tf 2.4
tf.keras.mixed_precision.set_global_policy('mixed_float16')
从 tf 2.4
开始,此功能不再是实验性的。
我需要添加mixed precision to my code in order to save some memory. Specifically, I have tried adding mixed precision policy near line 27 in https://github.com/nimRobotics/google-research/blob/master/ravens/train.py,下面是代码摘录
import argparse
import datetime
import os
import numpy as np
from ravens import agents
from ravens import Dataset
import tensorflow as tf
# tf.keras.mixed_precision.set_global_policy('mixed_float16')
# OR
# policy = tf.keras.mixed_precision.Policy('mixed_float16')
# mixed_precision.set_global_policy(policy)
这两种方法都会导致如下所示的属性错误,我使用的是 Google Colab with TF 2.3.0
使用 tf.keras.mixed_precision.set_global_policy('mixed_float16')
结果
Traceback (most recent call last):
File "train.py", line 28, in <module>
tf.keras.mixed_precision.set_global_policy('mixed_float16')
AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'set_global_policy'
正在使用
policy = tf.keras.mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)
结果
Traceback (most recent call last):
File "train.py", line 29, in <module>
policy = tf.keras.mixed_precision.Policy('mixed_float16')
AttributeError: module 'tensorflow.keras.mixed_precision' has no attribute 'Policy'
任何帮助或提示将不胜感激!
对于 tf < 2.4
你应该使用 mixed precision 的实验包。
tf.keras.mixed_precision.experimental.Policy(
name, loss_scale='auto'
)
例如,在 tf 2.3
policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
tf.keras.mixed_precision.experimental.set_policy(policy)
并在 tf 2.4
tf.keras.mixed_precision.set_global_policy('mixed_float16')
从 tf 2.4
开始,此功能不再是实验性的。