每周而不是每天显示 COUNT(*)
Display COUNT(*) for every week instead of every day
假设我有一个 table,user_id
类型为 Int32
,login_time
为 DateTime
,格式为 UTC
。
user_id
不是唯一的,所以 SELECT user_id, login_time FROM some_table;
给出以下结果:
┌─user_id─┬──login_time─┐
│ 1 │ 2021-03-01 │
│ 1 │ 2021-03-01 │
│ 1 │ 2021-03-02 │
│ 2 │ 2021-03-02 │
│ 2 │ 2021-03-03 │
└─────────┴─────────────┘
如果我 运行 SELECT COUNT(*) as count, toDate(login_time) as l FROM some_table GROUP BY l
我得到以下结果:
┌─count───┬──login_time─┐
│ 2 │ 2021-03-01 │
│ 2 │ 2021-03-02 │
│ 1 │ 2021-03-03 │
└─────────┴─────────────┘
我想重新格式化结果以每周显示 COUNT
,而不是像现在这样每天显示。
上述示例的结果可能如下所示:
┌──count──┬──year─┬──month──┬─week ordinal┐
│ 5 │ 2021 │ 03 │ 1 │
│ 0 │ 2021 │ 03 │ 2 │
│ 0 │ 2021 │ 03 │ 3 │
│ 0 │ 2021 │ 03 │ 4 │
└─────────┴───────┴─────────┴─────────────┘
我浏览了文档,发现了一些有趣的功能,但未能使它们解决我的问题。
我以前从未使用过 clickhouse
,对 SQL 也不是很有经验,这就是我在这里寻求帮助的原因。
试试这个查询:
select count() count, toYear(start_of_month) year, toMonth(start_of_month) month,
toWeek(start_of_week) - toWeek(start_of_month) + 1 AS "week ordinal"
from (
select *, toStartOfMonth(login_time) start_of_month,
toStartOfWeek(login_time) start_of_week
from (
/* emulate test dataset */
select data.1 user_id, toDate(data.2) login_time
from (
select arrayJoin([
(1, '2021-02-27'),
(1, '2021-02-28'),
(1, '2021-03-01'),
(1, '2021-03-01'),
(1, '2021-03-02'),
(2, '2021-03-02'),
(2, '2021-03-03'),
(2, '2021-03-08'),
(2, '2021-03-16'),
(2, '2021-04-01')]) data)
)
)
group by start_of_month, start_of_week
order by start_of_month, start_of_week
/*
┌─count─┬─year─┬─month─┬─week ordinal─┐
│ 1 │ 2021 │ 2 │ 4 │
│ 1 │ 2021 │ 2 │ 5 │
│ 5 │ 2021 │ 3 │ 1 │
│ 1 │ 2021 │ 3 │ 2 │
│ 1 │ 2021 │ 3 │ 3 │
│ 1 │ 2021 │ 4 │ 1 │
└───────┴──────┴───────┴──────────────┘
*/
假设我有一个 table,user_id
类型为 Int32
,login_time
为 DateTime
,格式为 UTC
。
user_id
不是唯一的,所以 SELECT user_id, login_time FROM some_table;
给出以下结果:
┌─user_id─┬──login_time─┐
│ 1 │ 2021-03-01 │
│ 1 │ 2021-03-01 │
│ 1 │ 2021-03-02 │
│ 2 │ 2021-03-02 │
│ 2 │ 2021-03-03 │
└─────────┴─────────────┘
如果我 运行 SELECT COUNT(*) as count, toDate(login_time) as l FROM some_table GROUP BY l
我得到以下结果:
┌─count───┬──login_time─┐
│ 2 │ 2021-03-01 │
│ 2 │ 2021-03-02 │
│ 1 │ 2021-03-03 │
└─────────┴─────────────┘
我想重新格式化结果以每周显示 COUNT
,而不是像现在这样每天显示。
上述示例的结果可能如下所示:
┌──count──┬──year─┬──month──┬─week ordinal┐
│ 5 │ 2021 │ 03 │ 1 │
│ 0 │ 2021 │ 03 │ 2 │
│ 0 │ 2021 │ 03 │ 3 │
│ 0 │ 2021 │ 03 │ 4 │
└─────────┴───────┴─────────┴─────────────┘
我浏览了文档,发现了一些有趣的功能,但未能使它们解决我的问题。
我以前从未使用过 clickhouse
,对 SQL 也不是很有经验,这就是我在这里寻求帮助的原因。
试试这个查询:
select count() count, toYear(start_of_month) year, toMonth(start_of_month) month,
toWeek(start_of_week) - toWeek(start_of_month) + 1 AS "week ordinal"
from (
select *, toStartOfMonth(login_time) start_of_month,
toStartOfWeek(login_time) start_of_week
from (
/* emulate test dataset */
select data.1 user_id, toDate(data.2) login_time
from (
select arrayJoin([
(1, '2021-02-27'),
(1, '2021-02-28'),
(1, '2021-03-01'),
(1, '2021-03-01'),
(1, '2021-03-02'),
(2, '2021-03-02'),
(2, '2021-03-03'),
(2, '2021-03-08'),
(2, '2021-03-16'),
(2, '2021-04-01')]) data)
)
)
group by start_of_month, start_of_week
order by start_of_month, start_of_week
/*
┌─count─┬─year─┬─month─┬─week ordinal─┐
│ 1 │ 2021 │ 2 │ 4 │
│ 1 │ 2021 │ 2 │ 5 │
│ 5 │ 2021 │ 3 │ 1 │
│ 1 │ 2021 │ 3 │ 2 │
│ 1 │ 2021 │ 3 │ 3 │
│ 1 │ 2021 │ 4 │ 1 │
└───────┴──────┴───────┴──────────────┘
*/