通过保持分组在 pandas 数据框列中查找前 n 个元素
Find top n elements in pandas dataframe column by keeping the grouping
我试图找到列 total_petitions
的前 5 个元素,但保留我所做的有序分组。
df = df[['fy', 'EmployerState', 'total_petitions']]
table = df.groupby(['fy','EmployerState']).mean()
table.nlargest(5, 'total_petitions')
示例输出:
fy EmployerState total_petitions
2020 WA 7039.333333
2016 MD 2647.400000
2017 MD 2313.142857
... TX 2305.541667
2020 TX 2081.952381
期望的输出:
fy EmployerState total_petitions
2016 AL 3.875000
AR 225.333333
AZ 26.666667
CA 326.056604
CO 21.333333
... ... ...
2020 VA 36.714286
WA 7039.333333
WI 43.750000
WV 8986086.08
WY 1.000000
其中 total_petitions
的元素是 5 个按年均值最高的州
你要找的是一个支点table:
df = df.pivot_table(values='total_petitions', index=['fy','EmployerState'])
df = df.groupby(level='fy')['total_petitions'].nlargest(5).reset_index(level=0, drop=True).reset_index()
我试图找到列 total_petitions
的前 5 个元素,但保留我所做的有序分组。
df = df[['fy', 'EmployerState', 'total_petitions']]
table = df.groupby(['fy','EmployerState']).mean()
table.nlargest(5, 'total_petitions')
示例输出:
fy EmployerState total_petitions
2020 WA 7039.333333
2016 MD 2647.400000
2017 MD 2313.142857
... TX 2305.541667
2020 TX 2081.952381
期望的输出:
fy EmployerState total_petitions
2016 AL 3.875000
AR 225.333333
AZ 26.666667
CA 326.056604
CO 21.333333
... ... ...
2020 VA 36.714286
WA 7039.333333
WI 43.750000
WV 8986086.08
WY 1.000000
其中 total_petitions
的元素是 5 个按年均值最高的州
你要找的是一个支点table:
df = df.pivot_table(values='total_petitions', index=['fy','EmployerState'])
df = df.groupby(level='fy')['total_petitions'].nlargest(5).reset_index(level=0, drop=True).reset_index()