如何通过匹配另一个数据框中的整个列中的字符串来检索一个数据框中的值?

How to retrieve value in one data frame by matching a string within an entire column from another data frame?

假设我有一个如下所示的数据框 df1

> df1
          probe                         OMIM
1  1565034_s_at                       601464
2     201000_at 601065 /// 613287 /// 616339
3     204565_at                       615652
4     205355_at            600301 /// 610006
5   205734_s_at                       601464
6   205735_s_at                       601464
7     206527_at            137150 /// 613163
8     209173_at                       606358
9   209459_s_at            137150 /// 613163
10    209460_at            137150 /// 613163
11    215465_at                             
12    223864_at                       610856
13    224742_at            612674 /// 613599

还有第二个数据框,df2:

> df2
                                         platprobe   symbol
1   1565034_s_at,205734_s_at,242078_at,205735_s_at     AFF3
2                                        201000_at     AARS
3                                        201884_at   DNALI1
4                                      202779_s_at     PLK1
5                                        204565_at   ACOT13
6                              205355_at,226030_at   ACADSB
7      205808_at,207284_s_at,209135_at,210896_s_at   LIMCH1
8      206164_at,206165_s_at,206166_s_at,217528_at   SLC7A8
9                  206527_at,209459_s_at,209460_at     ABAT
10                             209173_at,228969_at     AGR2
11                                       215465_at   ABCA12
12                                     221024_s_at  TMEM144
13                                       223864_at ANKRD30A
14                 224742_at,228123_s_at,228124_at   ABHD12
15                           225421_at,225431_x_at   GALNT7
16                                       226120_at    PSAT1
17                                       228241_at     AGR3

我想根据 df1$probedf2$platprobe 的匹配值向 df1df1$symbol 添加一个新列。结果应该是这样的:

> df1
          probe                         OMIM    symbol
1  1565034_s_at                       601464      AFF3
2     201000_at 601065 /// 613287 /// 616339      AARS
3     204565_at                       615652    ACOT13
4     205355_at            600301 /// 610006    ACADSB
5   205734_s_at                       601464      AFF3
6   205735_s_at                       601464      AFF3
7     206527_at            137150 /// 613163      ABAT
8     209173_at                       606358      AGR2
9   209459_s_at            137150 /// 613163      ABAT
10    209460_at            137150 /// 613163      ABAT
11    215465_at                                 ABCA12
12    223864_at                       610856  ANKRD30A
13    224742_at            612674 /// 613599    ABHD12

对我来说具有挑战性的部分是 df2$platprobe 在许多情况下包含除了找到 in df1$probe 之外的各种注释。所以,如果我尝试:

#This will retrieve only perfect matches (where df2$platprobe contains only one possible value, such as ABCA12):
df1$symbol <- df2$symbol[df2$probe %in% df1$platprobe]

#And if I use 'grepl', that won't work:
#(The reason for using 'unlist' and 'strsplit' is because I thought that maybe breaking all possible
#values from the entire df2$platprobe into a object that would work. But it doesn't)

df1$symbol <- df2$symbol[grepl(df1$probe, unlist(strsplit(paste(df2$platprobe, sep=",", collapse=","), ",")))]

非常感谢任何帮助。

PS: 另外如果大家有更好的想法,多一个话题标题,非常欢迎。

更新 谢谢@Anoushiravan R。很抱歉没有把可重现的 df 放在前面。现在,他们在这里:

df1 <- data.frame(probe=c("1565034_s_at", "201000_at", "204565_at", 
"205355_at", "205734_s_at", "205735_s_at", "206527_at", "209173_at", 
"209459_s_at", "209460_at", "215465_at", "223864_at", "224742_at"
), OMIM = c("601464", "601065 /// 613287 /// 616339", "615652", 
"600301 /// 610006", "601464", "601464", "137150 /// 613163", 
"606358", "137150 /// 613163", "137150 /// 613163", "", "610856", 
"612674 /// 613599"))
df2 <- data.frame(platprobe = c("1565034_s_at, 205734_s_at, 205735_s_at, 
227198_at, 242078_at, 243967_at", "201000_at", "201884_at", "202779_s_at",
"204565_at", "205355_at,226030_at", "205808_at, 207284_s_at, 209135_at, 
210896_s_at, 224996_at, 225008_at, 242037_at", "206164_at, 206165_s_at, 
206166_s_at, 217528_at", "206527_at, 209459_s_at,209460_at", "209173_at, 
228969_at", "215465_at", "221024_s_at", "223864_at","224742_at, 228123_s_at, 
228124_at", "225421_at,225431_x_at", "226120_at", "228241_at"), symbol=c("AFF3", 
"AARS", "DNALI1", "PLK1", "ACOT13", "ACADSB", "LIMCH1", "SLC7A8", "ABAT", "AGR2", 
"ABCA12", "TMEM144", "ANKRD30A", "ABHD12", "GALNT7", "PSAT1", "AGR3"))

您可以使用以下解决方案:

library(dplyr)
library(stringr)
library(purrr)

df1 %>%
  mutate(symbol = map_chr(probe, ~ df2$symbol[which(str_detect(df2$platprobe, .x))]))


          probe                         OMIM   symbol
1  1565034_s_at                       601464     AFF3
2     201000_at 601065 /// 613287 /// 616339     AARS
3     204565_at                       615652   ACOT13
4     205355_at            600301 /// 610006   ACADSB
5   205734_s_at                       601464     AFF3
6   205735_s_at                       601464     AFF3
7     206527_at            137150 /// 613163     ABAT
8     209173_at                       606358     AGR2
9   209459_s_at            137150 /// 613163     ABAT
10    209460_at            137150 /// 613163     ABAT
11    215465_at                                ABCA12
12    223864_at                       610856 ANKRD30A
13    224742_at            612674 /// 613599   ABHD12

虽然上面的答案达到了目的,但要表明它可以在没有 purrr 的情况下完成

library(dplyr)
library(tidyr)
library(stringr)

df1 %>% left_join(df2 %>% separate_rows(platprobe, sep = ',') %>%
                    mutate(platprobe = str_trim(platprobe)), by = c('probe' = 'platprobe'))

          probe                         OMIM   symbol
1  1565034_s_at                       601464     AFF3
2     201000_at 601065 /// 613287 /// 616339     AARS
3     204565_at                       615652   ACOT13
4     205355_at            600301 /// 610006   ACADSB
5   205734_s_at                       601464     AFF3
6   205735_s_at                       601464     AFF3
7     206527_at            137150 /// 613163     ABAT
8     209173_at                       606358     AGR2
9   209459_s_at            137150 /// 613163     ABAT
10    209460_at            137150 /// 613163     ABAT
11    215465_at                                ABCA12
12    223864_at                       610856 ANKRD30A
13    224742_at            612674 /// 613599   ABHD12

处理您的问题的另一种方法是基于您的观点/观察,即您的匹配键在第二个数据帧中“折叠”。

{tidyr} 有一个很好的功能,可以在新行中拆分嵌套值,即 tidyr()::separate_rows()。这将使您的第二个 df 变成长格式。

注意:separate_rows() 允许根据需要拆分多个列。 但是这里我们只使用你的密钥 platprobe.

library(dplyr)   # data crunching 
library(tidyr)   # data manipulation for generating tidy df

# how to separate the nested column values to rows
df2 %>% separate_rows(platprobe, sep = ",")

检查行分布:

# A tibble: 33 x 2
   platprobe    symbol
   <chr>        <chr> 
 1 1565034_s_at AFF3  
 2 205734_s_at  AFF3  
 3 242078_at    AFF3  
 4 205735_s_at  AFF3  
 5 201000_at    AARS  
...

您现在可以正确对齐匹配键并执行 left_join() 合并两个数据框。

# merging the "long" lookup df2 with df1
df1 %>% left_join(
     df2 %>% separate_rows(platprobe, sep = ",")
   , by = c("probe" = "platprobe")    # define matching keys in df1 and df2
)

这提供了

          probe   symbol
1  1565034_s_at     AFF3
2     201000_at     AARS
3     204565_at   ACOT13
4     205355_at   ACADSB
...

如果您想使用 grep 进行匹配,您可以通过 sapplylapply.

进行匹配
df1$symbol <- df2$symbol[sapply(df1$probe, grep, df2$platprobe)]

df1
#          probe                         OMIM   symbol
#1  1565034_s_at                       601464     AFF3
#2     201000_at 601065 /// 613287 /// 616339     AARS
#3     204565_at                       615652   ACOT13
#4     205355_at            600301 /// 610006   ACADSB
#5   205734_s_at                       601464     AFF3
#6   205735_s_at                       601464     AFF3
#7     206527_at            137150 /// 613163     ABAT
#8     209173_at                       606358     AGR2
#9   209459_s_at            137150 /// 613163     ABAT
#10    209460_at            137150 /// 613163     ABAT
#11    215465_at                                ABCA12
#12    223864_at                       610856 ANKRD30A
#13    224742_at            612674 /// 613599   ABHD12