在 macOS 上有效地将 3D numpy 位图数组(y、x、RGB)渲染为 window(使用 openCV 或其他方式)

Efficiently render 3D numpy bitmap array (y, x, RGB) to window on macOS (using openCV or otherwise)

我正在渲染一个动态变化的 numpy 位图数组并尝试提高我的帧率。

目前我正在使用 openCV:

cv2.imshow(WINDOW_NAME, )
cv2.waitKey(1)

这需要大约 20 毫秒,这还不错。

但是我可以做得更好吗?

cv2.setWindowProperty(WINDOW_NAME, cv2.WND_PROP_OPENGL, cv2.WINDOW_OPENGL)

设置此项没有明显效果。但是 openCV 是否提供了比 imshow 更好的技术来利用 GL 绘图表面?

有什么可行的 openCV 替代品吗? import OpenGL 是经过验证的蠕虫。

REF:

REF: https://pypi.org/project/omgl/0.0.1/

您可以使用外部子进程视频渲染器渲染视频。

我通过将视频帧传输到 FFplay 来测试建议的解决方案。
该解决方案效果不佳 - 未显示最后几帧。

将解决方案视为概念解决方案

代码打开 FFplay 作为子进程,并将原始帧写入 FFplay 的 stdin 管道。

代码如下:

import cv2
import numpy as np
import subprocess as sp
import shlex
import time

# Synthetic "raw BGR" image for testing
width, height, n_frames = 1920, 1080, 1000  # 1000 frames, resolution 1920x1080

img = np.full((height, width, 3), 60, np.uint8)

def make_bgr_frame(i):
    """ Draw a blue number in the center of img """
    cx, cy = width//2, height//2
    l = len(str(i+1))

    img[cy-20:cy+20, cx-15*l:cx+15*l, :] = 0

    # Blue number
    cv2.putText(
        img,
        str(i+1),
        (cx-10*l, h+10),
        cv2.FONT_HERSHEY_DUPLEX,
        1,
        (255, 30, 30),
        2
        )

# FFplay input: raw video frames from stdin pipe.
ffplay_process = sp.Popen(
    shlex.split(
        f'ffplay -hide_banner -loglevel error'
        f' -exitonkeydown -framerate 1000 -fast'
        f' -probesize 32 -flags low_delay'
        f' -f rawvideo -video_size {width}x{height}'
        f' -pixel_format bgr24 -an -sn -i pipe:'
    ),
    stdin=sp.PIPE
)

t = time.time()

for i in range(n_frames):
    make_bgr_frame(i)
    
    if ffplay_process.poll() is not None:
        break # Break if FFplay process is closed
    
    try:
        # Write raw video frame to stdin pipe of FFplay sub-process.
        ffplay_process.stdin.write(img.tobytes())
        # ffplay_process.stdin.flush()
    except Exception as e:
        break

elapsed = time.time() - t
arg_fps = n_frames / elapsed

print(f'FFplay elapsed time = {elapsed:.2f}')
print(f'FFplay average fps = {arg_fps:.2f}')

ffplay_process.stdin.close()
ffplay_process.terminate()


# OpenCV
##########################################################
t = time.time()

for i in range(n_frames):
    make_bgr_frame(i)
    cv2.imshow("img", img)
    cv2.waitKey(1)

elapsed = time.time() - t
arg_fps = n_frames / elapsed

print(f'OpenCV elapsed time = {elapsed:.2f}')
print(f'OpenCV average fps = {arg_fps:.2f}')

cv2.destroyAllWindows()
##########################################################

结果(Windows 10):

FFplay elapsed time = 5.53
FFplay average fps = 180.98
OpenCV elapsed time = 6.16
OpenCV average fps = 162.32

在我的机器上差异很小。