sklearn Python 中的多元线性回归错误
Error in Multiple Linear Regression in Python with sklearn
我正在尝试对数据集执行多元线性回归。我已经准备好数据集,train_test_split 已完成,当我尝试将模型拟合到线性回归量时,出现以下错误:
我还附上了下面的代码。请看一下并帮我解决错误。
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
dataset = pd.read_csv('50_Startups.csv');
dataset.head()
x = dataset.iloc[:,:-1]
y = dataset.iloc[:,:4]
states = pd.get_dummies(x['State'], drop_first=True)
states.head()
x = x.drop('State', axis=1)
x.head()
x = pd.concat([x, states], axis=1)
from sklearn.model_selection import train_test_split
x_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
您因为选择了错误的Y值(目标值)而出现错误。
这会起作用 -
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
dataset = pd.read_csv('50_Startups.csv');
dataset.head()
x = dataset.iloc[:,:-1]
y = dataset['Profit']
x = pd.get_dummies(dataset, prefix=['State'])
from sklearn.model_selection import train_test_split
x_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
我正在尝试对数据集执行多元线性回归。我已经准备好数据集,train_test_split 已完成,当我尝试将模型拟合到线性回归量时,出现以下错误:
我还附上了下面的代码。请看一下并帮我解决错误。
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
dataset = pd.read_csv('50_Startups.csv');
dataset.head()
x = dataset.iloc[:,:-1]
y = dataset.iloc[:,:4]
states = pd.get_dummies(x['State'], drop_first=True)
states.head()
x = x.drop('State', axis=1)
x.head()
x = pd.concat([x, states], axis=1)
from sklearn.model_selection import train_test_split
x_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
您因为选择了错误的Y值(目标值)而出现错误。 这会起作用 -
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
dataset = pd.read_csv('50_Startups.csv');
dataset.head()
x = dataset.iloc[:,:-1]
y = dataset['Profit']
x = pd.get_dummies(dataset, prefix=['State'])
from sklearn.model_selection import train_test_split
x_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)