Keras 模型连接:属性和值错误
Keras model concat: Attribute and Value error
这是我根据 Liu, Gibson, et al 2017 (https://arxiv.org/abs/1708.09022) 的论文制作的 keras 模型。如图1.
我有3个问题-
- 我不确定我是否按照论文正确使用了连接。
- 我收到 AttributeError: 'KerasTensor' object has no attribute 'add' on model4.add flatten。这个错误没有早点出现
- 之前,唯一的错误是 ValueError:
Concatenate
层需要具有匹配形状的输入,但连接轴除外。得到输入形状:[(None, 310, 1, 16), (None, 310, 1, 32), (None, 310, 1, 64)],我我也不知道怎么处理。
model1= Sequential()
model2= Sequential()
model3= Sequential()
model4= Sequential()
input_sh = (619,2,1)
model1.add(Convolution1D(filters=16, kernel_size=21, padding='same', activation='LeakyReLU', input_shape=input_sh))
model1.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model1.add(BatchNormalization())
model1.summary()
model2.add(Convolution1D(filters=32, kernel_size=11, padding='same', activation='LeakyReLU', input_shape= input_sh))
model2.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model2.add(BatchNormalization())
model2.summary()
model3.add(Convolution1D(filters=64, kernel_size=5, padding='same', activation='LeakyReLU', input_shape= input_sh))
model3.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model3.add(BatchNormalization())
model3.summary()
model4 = concatenate([model1.output, model2.output, model3.output], axis= -1)
model4.add(Flatten()) # Line with error
model4.add(Dense(2048, activation='tanh'))
model4.add(Dropout(.5))
model4.add(Dense(len(dic), activation="softmax")) #len(dic) = 19
model4.summary()
输出结果如下-
Model: "sequential_59"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_45 (Conv1D) (None, 619, 2, 16) 352
_________________________________________________________________
max_pooling2d_45 (MaxPooling (None, 310, 1, 16) 0
_________________________________________________________________
batch_normalization_45 (Batc (None, 310, 1, 16) 64
=================================================================
Total params: 416
Trainable params: 384
Non-trainable params: 32
_________________________________________________________________
Model: "sequential_60"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_46 (Conv1D) (None, 619, 2, 32) 384
_________________________________________________________________
max_pooling2d_46 (MaxPooling (None, 310, 1, 32) 0
_________________________________________________________________
batch_normalization_46 (Batc (None, 310, 1, 32) 128
=================================================================
Total params: 512
Trainable params: 448
Non-trainable params: 64
_________________________________________________________________
Model: "sequential_61"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_47 (Conv1D) (None, 619, 2, 64) 384
_________________________________________________________________
max_pooling2d_47 (MaxPooling (None, 310, 1, 64) 0
_________________________________________________________________
batch_normalization_47 (Batc (None, 310, 1, 64) 256
=================================================================
Total params: 640
Trainable params: 512
Non-trainable params: 128
_________________________________________________________________
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-25-bf7ad914aa4e> in <module>()
44 model4 = concatenate([model1.output, model2.output, model3.output], axis= -1)
45
---> 46 model4.add(Flatten())
47 model4.add(Dense(2048, activation='tanh'))
48 model4.add(Dropout(.5))
AttributeError: 'KerasTensor' object has no attribute 'add'
您可以使用 Functional()
API 来解决您的问题(我还没有读过这篇论文,但这里介绍了如何组合模型并获得最终输出)。
为了简单起见,我使用了 'relu' 激活(确保在 tensorflow
中使用 keras
)
下面是应该有效的代码:
import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
model1= Sequential()
model2= Sequential()
model3= Sequential()
input_sh = (619,2,1)
model1.add(Convolution1D(filters=16, kernel_size=21, padding='same', activation='relu', input_shape=input_sh))
model1.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model1.add(BatchNormalization())
model1.summary()
model2.add(Convolution1D(filters=32, kernel_size=11, padding='same', activation='relu', input_shape= input_sh))
model2.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model2.add(BatchNormalization())
model2.summary()
model3.add(Convolution1D(filters=64, kernel_size=5, padding='same', activation='relu', input_shape= input_sh))
model3.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model3.add(BatchNormalization())
model3.summary()
concatenated = concatenate([model1.output, model2.output, model3.output], axis=-1)
x = Dense(64, activation='relu')(concatenated)
x = Flatten()(x)
x = Dropout(.5)(x)
x = Dense(19, activation="softmax")(x)
final_model = Model(inputs=[model1.input,model2.input,model3.input],outputs=x)
final_model.summary()
Model: "functional_3"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
conv1d_15_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_16_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_17_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_15 (Conv1D) (None, 619, 2, 16) 352 conv1d_15_input[0][0]
__________________________________________________________________________________________________
conv1d_16 (Conv1D) (None, 619, 2, 32) 384 conv1d_16_input[0][0]
__________________________________________________________________________________________________
conv1d_17 (Conv1D) (None, 619, 2, 64) 384 conv1d_17_input[0][0]
__________________________________________________________________________________________________
max_pooling2d_15 (MaxPooling2D) (None, 310, 1, 16) 0 conv1d_15[0][0]
__________________________________________________________________________________________________
max_pooling2d_16 (MaxPooling2D) (None, 310, 1, 32) 0 conv1d_16[0][0]
__________________________________________________________________________________________________
max_pooling2d_17 (MaxPooling2D) (None, 310, 1, 64) 0 conv1d_17[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 310, 1, 16) 64 max_pooling2d_15[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 310, 1, 32) 128 max_pooling2d_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 310, 1, 64) 256 max_pooling2d_17[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 310, 1, 112) 0 batch_normalization_15[0][0]
batch_normalization_16[0][0]
batch_normalization_17[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 310, 1, 64) 7232 concatenate_5[0][0]
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 19840) 0 dense_5[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 19840) 0 flatten_3[0][0]
__________________________________________________________________________________________________
dense_6 (Dense) (None, 19) 376979 dropout_3[0][0]
==================================================================================================
Total params: 385,779
Trainable params: 385,555
Non-trainable params: 224
这是我根据 Liu, Gibson, et al 2017 (https://arxiv.org/abs/1708.09022) 的论文制作的 keras 模型。如图1.
我有3个问题-
- 我不确定我是否按照论文正确使用了连接。
- 我收到 AttributeError: 'KerasTensor' object has no attribute 'add' on model4.add flatten。这个错误没有早点出现
- 之前,唯一的错误是 ValueError:
Concatenate
层需要具有匹配形状的输入,但连接轴除外。得到输入形状:[(None, 310, 1, 16), (None, 310, 1, 32), (None, 310, 1, 64)],我我也不知道怎么处理。
model1= Sequential()
model2= Sequential()
model3= Sequential()
model4= Sequential()
input_sh = (619,2,1)
model1.add(Convolution1D(filters=16, kernel_size=21, padding='same', activation='LeakyReLU', input_shape=input_sh))
model1.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model1.add(BatchNormalization())
model1.summary()
model2.add(Convolution1D(filters=32, kernel_size=11, padding='same', activation='LeakyReLU', input_shape= input_sh))
model2.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model2.add(BatchNormalization())
model2.summary()
model3.add(Convolution1D(filters=64, kernel_size=5, padding='same', activation='LeakyReLU', input_shape= input_sh))
model3.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model3.add(BatchNormalization())
model3.summary()
model4 = concatenate([model1.output, model2.output, model3.output], axis= -1)
model4.add(Flatten()) # Line with error
model4.add(Dense(2048, activation='tanh'))
model4.add(Dropout(.5))
model4.add(Dense(len(dic), activation="softmax")) #len(dic) = 19
model4.summary()
输出结果如下-
Model: "sequential_59"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_45 (Conv1D) (None, 619, 2, 16) 352
_________________________________________________________________
max_pooling2d_45 (MaxPooling (None, 310, 1, 16) 0
_________________________________________________________________
batch_normalization_45 (Batc (None, 310, 1, 16) 64
=================================================================
Total params: 416
Trainable params: 384
Non-trainable params: 32
_________________________________________________________________
Model: "sequential_60"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_46 (Conv1D) (None, 619, 2, 32) 384
_________________________________________________________________
max_pooling2d_46 (MaxPooling (None, 310, 1, 32) 0
_________________________________________________________________
batch_normalization_46 (Batc (None, 310, 1, 32) 128
=================================================================
Total params: 512
Trainable params: 448
Non-trainable params: 64
_________________________________________________________________
Model: "sequential_61"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_47 (Conv1D) (None, 619, 2, 64) 384
_________________________________________________________________
max_pooling2d_47 (MaxPooling (None, 310, 1, 64) 0
_________________________________________________________________
batch_normalization_47 (Batc (None, 310, 1, 64) 256
=================================================================
Total params: 640
Trainable params: 512
Non-trainable params: 128
_________________________________________________________________
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-25-bf7ad914aa4e> in <module>()
44 model4 = concatenate([model1.output, model2.output, model3.output], axis= -1)
45
---> 46 model4.add(Flatten())
47 model4.add(Dense(2048, activation='tanh'))
48 model4.add(Dropout(.5))
AttributeError: 'KerasTensor' object has no attribute 'add'
您可以使用 Functional()
API 来解决您的问题(我还没有读过这篇论文,但这里介绍了如何组合模型并获得最终输出)。
为了简单起见,我使用了 'relu' 激活(确保在 tensorflow
中使用 keras
)
下面是应该有效的代码:
import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
model1= Sequential()
model2= Sequential()
model3= Sequential()
input_sh = (619,2,1)
model1.add(Convolution1D(filters=16, kernel_size=21, padding='same', activation='relu', input_shape=input_sh))
model1.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model1.add(BatchNormalization())
model1.summary()
model2.add(Convolution1D(filters=32, kernel_size=11, padding='same', activation='relu', input_shape= input_sh))
model2.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model2.add(BatchNormalization())
model2.summary()
model3.add(Convolution1D(filters=64, kernel_size=5, padding='same', activation='relu', input_shape= input_sh))
model3.add(MaxPooling2D(pool_size=(2,2), padding='same'))
model3.add(BatchNormalization())
model3.summary()
concatenated = concatenate([model1.output, model2.output, model3.output], axis=-1)
x = Dense(64, activation='relu')(concatenated)
x = Flatten()(x)
x = Dropout(.5)(x)
x = Dense(19, activation="softmax")(x)
final_model = Model(inputs=[model1.input,model2.input,model3.input],outputs=x)
final_model.summary()
Model: "functional_3"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
conv1d_15_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_16_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_17_input (InputLayer) [(None, 619, 2, 1)] 0
__________________________________________________________________________________________________
conv1d_15 (Conv1D) (None, 619, 2, 16) 352 conv1d_15_input[0][0]
__________________________________________________________________________________________________
conv1d_16 (Conv1D) (None, 619, 2, 32) 384 conv1d_16_input[0][0]
__________________________________________________________________________________________________
conv1d_17 (Conv1D) (None, 619, 2, 64) 384 conv1d_17_input[0][0]
__________________________________________________________________________________________________
max_pooling2d_15 (MaxPooling2D) (None, 310, 1, 16) 0 conv1d_15[0][0]
__________________________________________________________________________________________________
max_pooling2d_16 (MaxPooling2D) (None, 310, 1, 32) 0 conv1d_16[0][0]
__________________________________________________________________________________________________
max_pooling2d_17 (MaxPooling2D) (None, 310, 1, 64) 0 conv1d_17[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 310, 1, 16) 64 max_pooling2d_15[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 310, 1, 32) 128 max_pooling2d_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 310, 1, 64) 256 max_pooling2d_17[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 310, 1, 112) 0 batch_normalization_15[0][0]
batch_normalization_16[0][0]
batch_normalization_17[0][0]
__________________________________________________________________________________________________
dense_5 (Dense) (None, 310, 1, 64) 7232 concatenate_5[0][0]
__________________________________________________________________________________________________
flatten_3 (Flatten) (None, 19840) 0 dense_5[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 19840) 0 flatten_3[0][0]
__________________________________________________________________________________________________
dense_6 (Dense) (None, 19) 376979 dropout_3[0][0]
==================================================================================================
Total params: 385,779
Trainable params: 385,555
Non-trainable params: 224