当满足另一列的条件时,如何使用 pandas diff() 函数重置计数?

How do I reset the count using the pandas diff() function when a condition from another column is satisfied?

我正在尝试计算日期之间的天数(累计),(按表示为 id 的列分组),但是,我想在满足条件时重置计数器。

下面我有以下数据框:

     reset_day category       date     id  tdelta
0            N      low 2019-09-04  16876     NaN
1            N      low 2019-09-05  16876     NaN
2            N      low 2019-09-06  16876     NaN
3            N      low 2019-09-07  16876     NaN
4            N      low 2019-09-08  16876     NaN
...        ...      ...        ...    ...     ...
5144         Y   medium 2021-05-23  17612     0.0
5145         Y     high 2021-05-23  23406     0.0
5146         Y     high 2021-05-23  21765     0.0
5147         Y   medium 2021-05-23  19480     0.0
5148         Y   medium 2021-05-23   9066     0.0

这里我想在“tdelta”列中输入值,当前值是NaN。此列计算每个 ID 的“日期”列之间的天数。

但是,我正在努力尝试根据列“reset_day”重置计数。如果列值是“Y”,那么应该为那个特定的 id 重新开始计数。在这种情况下,您已经可以在 tdelta 列中看到值 0。

我之前在类似的数据框上尝试过以下操作,方法是创建另一列表示为 test t delta:

example = example.sort_values(by="date")
example['date'] = pd.to_datetime(example['date'], format='%Y/%m/%d')
example['test tdelta'] = example.groupby('id')['date'].diff() / np.timedelta64(1, 'D')
example['test tdelta'] = example['test tdelta'].fillna(0) 

然而,这只是计算每个 ID 的日期之间的天数,并在没有我需要的重置的情况下填充缺失值。

关于如何解决这个问题有什么想法吗??

我认为根据重置日期创建一个额外的分组列可能正是您所需要的。

import pandas as pd
import numpy as np

df = pd.DataFrame({'reset_day':['N','N','Y','N','N','Y','Y','Y','Y','Y'],
                   'category':['low','low','low','low','low','medium','high','high','medium','medium'],
                   'date':['2019-09-04','2019-09-05','2019-09-06','2019-09-07','2019-09-08','2021-05-23','2021-05-23','2021-05-23','2021-05-23','2021-05-23'],
                   'id':[16876,16876,16876,16876,16876,17612,23406,21765,19480,9066]
                   })


df['date'] = pd.to_datetime(df['date'], format='%Y/%m/%d')
df = df.sort_values(['id','date'])

#create extra grouping column based on reset day
df['reset_group'] = df['reset_day'].replace({'N':False,'Y':True})
df['reset_group'] = df.groupby('id')['reset_group'].cumsum()

#use extra grouping column when calculating differences
df['tdelta'] = df.groupby(['id','reset_group'])['date'].diff() / np.timedelta64(1, 'D')
df['tdelta'] = df.groupby(['id','reset_group'])['tdelta'].cumsum().fillna(0)
print(df)

  reset_day category       date     id  reset_group  tdelta
9         Y   medium 2021-05-23   9066            1     0.0
0         N      low 2019-09-04  16876            0     0.0
1         N      low 2019-09-05  16876            0     1.0
2         Y      low 2019-09-06  16876            1     0.0
3         N      low 2019-09-07  16876            1     1.0
4         N      low 2019-09-08  16876            1     2.0
5         Y   medium 2021-05-23  17612            1     0.0
8         Y   medium 2021-05-23  19480            1     0.0
7         Y     high 2021-05-23  21765            1     0.0
6         Y     high 2021-05-23  23406            1     0.0