R:将 "NA" 个因子添加到 "levels" 函数

R: Adding "NA" factors to the "levels" function

我正在使用 R 编程语言。在这个例子中,我有以下数据:

library("dplyr")

df <- data.frame(b = rnorm(100,5,5), d = rnorm(100,2,2),
                 c = rnorm(100,10,10))

a <- c("a", "b", "c", "d", "e")
a <- sample(a, 100, replace=TRUE, prob=c(0.3, 0.2, 0.3, 0.1, 0.1))

a<- as.factor(a)
df$a = a


f <- c("a", "b", "c", "d", "e")
f <- sample(f, 100, replace=TRUE, prob=c(0.3, 0.2, 0.3, 0.1, 0.1))

f<- as.factor(f)
df$f = f

 head(df)
          b        d         c a f
1  6.896434 2.037835  2.867707 e a
2 -3.314758 2.681726 20.038918 d d
3  2.018130 2.229342 -8.341578 c a
4  9.738082 1.127069 18.337212 c c
5  2.442182 3.475735 27.875924 c c
6  5.061937 1.098709  6.166077 a e

然后我有以下函数 ("my_subset_mean") 计算 df$c 对于 "a,b,d,f" 的不同子集的"平均"值:

my_subset_mean <- function(r1, r2, r3, r4){  
  subset <- df %>% filter(a %in% r1, f %in% r4, b > r2, d < r3 )
  return(mean(subset$c))
}

在上一个问题中,我学习了如何编写一个循环来计算函数“my_subset_mean”在“a,b,d,f”的随机子集上的值:

create_output <- function() {
  uv <- levels(df$a)
  r1 <- sample(uv, sample(length(uv)))
 uv1 <- levels(df$f)
  r4 <- sample(uv1, sample(length(uv1)))
  rgb <- range(df$b)
  rgd <- range(df$d)
  r2 <- runif(1, rgb[1], rgb[2])
  r3 <- runif(1, rgd[1], rgd[2])
  my_subset_mean <- my_subset_mean(r1, r2, r3, r4)
  data.frame(r1 = toString(r1), r4 = toString(r4), r2, r3, my_subset_mean)
}

out <- do.call(rbind, replicate(100, create_output(), simplify = FALSE))

head(out)

             r1         r4        r2         r3 my_subset_mean
1 a, c, b, e, d          d 14.560821  3.4251138            NaN
2          d, e e, d, b, c  9.027482 -1.7108754            NaN
3             d e, b, a, d  1.447395  0.4279652      18.019990
4 a, e, b, c, d          e -6.807861  2.6301878       7.424415
5          a, d          d  8.307980 -1.8923647            NaN
6             a    b, c, a  7.180056 -0.4022791            NaN

问题:是否可以这样写循环(create_output),使得有时“r1, r2, r3, r4”的值不是经过考虑的?例如

             r1         r4        r2         r3     my_subset_mean
1            NA          d     14.56    3.4251138            5
2          d, e, d, b,   NA    NA        -1.7108754         3.1
3             e, b,  d         1.447         NA           18.019990

我在想也许这可以在“级别”声明中指定:

uv <- levels(df$a)
  r1 <- sample(uv, sample(length(uv)))

在这里,我们可以看到“uv”的值:

uv
[1] "a" "b" "c" "d" "e"

有什么办法可以让函数“my_subset_mean”有时忽略“a、b、d、f”的某些子集条件吗?例如。 “均值”仅使用“a,d”的子集条件计算?

谢谢

您可以修改 中的 my_subset_mean 函数以包含 r4 值。

library(dplyr)

my_subset_mean <- function(r1=NA, r2=NA, r3=NA, r4 = NA) {  
  if (all(is.na(r1))) r1 <- unique(df$a)
  if (all(is.na(r4))) r4 <- unique(df$f)
  if (is.na(r2)) r2 <- -Inf
  if (is.na(r3)) r3 <- Inf
  s <- filter(df, a %in% r1 , f %in% r4, b > r2 , d < r3)
  return(mean(s$c))
}

然后将create_output函数改成-

create_output <- function() {
  uv <- levels(df$a)
  r1 <- sample(list(sample(uv, sample(length(uv))), NA), 1)[[1]]
  uv1 <- levels(df$f)
  r4 <-  sample(list(sample(uv1, sample(length(uv1))), NA), 1)[[1]]
  rgb <- range(df$b)
  rgd <- range(df$d)
  r2 <- sample(c(runif(1, rgb[1], rgb[2]), NA), 1)
  r3 <- sample(c(runif(1, rgd[1], rgd[2]), NA), 1)
  my_subset_mean <- my_subset_mean(r1, r2, r3, r4)
  data.frame(r1 = toString(r1), r4 = toString(r4), r2, r3, my_subset_mean)
}

set.seed(123)
out <- do.call(rbind, replicate(100, create_output(), simplify = FALSE))
head(out)

#            r1         r4        r2        r3 my_subset_mean
#1            NA          c        NA 4.2164973      12.095431
#2 a, b, c, d, e    b, a, c        NA 0.4394423       7.130999
#3            NA a, c, e, b  9.285701        NA       8.236054
#4            NA         NA 14.060829 3.8960888      10.562523
#5    c, b, a, d         NA        NA        NA       9.015613
#6            NA    a, c, d  2.251218        NA      10.070425

请注意,目前我还没有分配任何出现 NA 值的概率,因此将 NA 作为任何参数的输入的概率为 50%。如果您想更改,可以根据您在 sample.

中的选择分配 probs