按日期排列数据(month/day 格式)

arranging data by date (month/day format)

在我追加 4 个不同的数据帧之后:

list_1 = [ ]

我在 list_1 中存储了以下数据:

| date       | 16/17 | 
| --------   | ------|
| 2016-12-29 | 50    | 
| 2016-12-30 | 52    | 
| 2017-01-01 | 53    | 
| 2017-01-02 | 51    |
[4 rows x 1 columns],
             16/17

| date       | 17/18 | 
| --------   | ------| 
| 2017-12-29 | 60    | 
| 2017-12-31 | 62    | 
| 2018-01-01 | 64    | 
| 2018-01-03 | 65    | 
[4 rows x 1 columns],
             17/18

| date       | 18/19 |
| --------   | ------| 
| 2018-12-30 | 54    | 
| 2018-12-31 | 53    | 
| 2019-01-02 | 52    | 
| 2019-01-03 | 51    | 
[4 rows x 1 columns],
             18/19

| date       | 19/20 |
| --------   | ------| 
| 2019-12-29 | 62    | 
| 2019-12-30 | 63    | 
| 2020-01-01 | 62    | 
| 2020-01-02 | 60    | 
[4 rows x 1 columns],
             19/20

为了将日期格式更改为 month/day 我使用以下代码:

pd.to_datetime(df['date']).dt.strftime('%m/%d')

但问题是当我想按 months/days 排列数据时:

| date     | 16/17 | 17/18 | 18/19 | 19/20 |
| -------- | ------| ------| ------| ------|
| 12/29    | 50    | 60    | NaN   | 62    |
| 12/30    | 52    | NaN   | 54    | 63    |
| 12/31    | NaN   | 62    | 53    | NaN   |
| 01/01    | 53    | 64    | NaN   | 62    |
| 01/02    | 51    | NaN   | 52    | 60    |
| 01/03    | NaN   | 65    | 51    | NaN   |

我试过以下方法:

df = pd.concat(list_1,axis=1)

还有:

df = pd.concat(list_1)
df.reset_index(inplace=True)
df = df.groupby(['date']).first()

还有:

df = pd.concat(list_1)
df.reset_index(inplace=True)
df = df.groupby(['date'] sort=False).first()

但还是达不到想要的效果

您可以在 groupby 中使用 sort=False 并创建新列以减去 DatetimeIndex 的第一个值并将其用于排序:

def f(x):
    x.index = pd.to_datetime(x.index)
    return x.assign(new =  x.index - x.index.min())

L = [x.pipe(f) for x in list_1]
df = pd.concat(L, axis=0).sort_values('new', kind='mergesort')

df = df.groupby(df.index.strftime('%m/%d'), sort=False).first().drop('new', axis=1)
print (df)
       16/17  17/18  18/19  19/20
date                             
12/29   50.0   60.0    NaN   62.0
12/30   52.0    NaN   54.0   63.0
12/31    NaN   62.0   53.0    NaN
01/01   53.0   64.0    NaN   62.0
01/02   51.0    NaN   52.0   60.0
01/03    NaN   65.0   51.0    NaN