将列添加到 Spark 数据框,其最大值小于当前记录的值

Add column to Spark dataframe with the max value that is less than the current record's value

我有一个类似于以下内容的 Spark 数据框:

id  claim_id                 service_date                  status   product
123 10606134411906233408    2018-09-17T00:00:00.000+0000    PD      blue
123 10606147900401009928    2019-01-24T00:00:00.000+0000    PD      yellow
123 10606160940704723994    2019-05-23T00:00:00.000+0000    RV      yellow
123 10606171648203079553    2019-08-29T00:00:00.000+0000    RJ      blue
123 10606186611407311724    2020-01-13T00:00:00.000+0000    PD      blue

请原谅我没有粘贴任何代码,因为没有任何效果。我想添加一个新列,其中状态为 PD 的前一行的最大值(service_date)和当前行的乘积 = 前一行的乘积。

这很容易通过相关子查询完成,但效率不高,此外,在 Spark 中也不可行,因为不支持非 equi 连接。另请注意,LAG 将不起作用,因为我并不总是需要紧接在前的记录(并且偏移量将是动态的)。

预期的输出将是这样的:

id  claim_id                 service_date                  status   product     previous_service_date
    123 10606134411906233408    2018-09-17T00:00:00.000+0000    PD      blue
    123 10606147900401009928    2019-01-24T00:00:00.000+0000    PD      yellow
    123 10606160940704723994    2019-05-23T00:00:00.000+0000    RV      yellow      2019-01-24T00:00:00.000+0000
    123 10606171648203079553    2019-08-29T00:00:00.000+0000    RJ      blue        2018-09-17T00:00:00.000+0000
    123 10606186611407311724    2020-01-13T00:00:00.000+0000    PD      blue        2018-09-17T00:00:00.000+0000

您可以尝试以下使用 max 作为 window 函数和 when(case 表达式)但关注前面的行

from pyspark.sql import functions as F
from pyspark.sql import Window


df = df.withColumn('previous_service_date',F.max(
    F.when(F.col("status")=="PD",F.col("service_date")).otherwise(None)
).over(
    Window.partitionBy("product")
          .rowsBetween(Window.unboundedPreceding,-1)
))

df.orderBy('service_date').show(truncate=False)
+---+--------------------+-------------------+------+-------+---------------------+
|id |claim_id            |service_date       |status|product|previous_service_date|
+---+--------------------+-------------------+------+-------+---------------------+
|123|10606134411906233408|2018-09-17 00:00:00|PD    |blue   |null                 |
|123|10606147900401009928|2019-01-24 00:00:00|PD    |yellow |null                 |
|123|10606160940704723994|2019-05-23 00:00:00|RV    |yellow |2019-01-24 00:00:00  |
|123|10606171648203079553|2019-08-29 00:00:00|RJ    |blue   |2018-09-17 00:00:00  |
|123|10606186611407311724|2020-01-13 00:00:00|PD    |blue   |2018-09-17 00:00:00  |
+---+--------------------+-------------------+------+-------+---------------------+

编辑 1

您也可以使用 last,如下所示

df = df.withColumn('previous_service_date',F.last(
    F.when(F.col("status")=="PD" ,F.col("service_date")).otherwise(None),True
).over(
    Window.partitionBy("product")
          .orderBy('service_date')
          .rowsBetween(Window.unboundedPreceding,-1)
))

让我知道这是否适合你。

您可以 copy 您的 DataFrame 到新的 DataFrame (df2) 和 join 两者,如下所示:

(df.join(df2, 
         on = [df.Service_date > df2.Service_date,
               df.product == df2.product,
               df2.status == 'PD'],
         how = "left"))

删除重复的列并将 df2.Service_date 重命名为 previous_service_date