'out' 的 Pytorch 张量在 CPU 上,参数 #1 'self' 的张量在 CPU 上,但希望它们在 GPU 上(同时检查 addmm 的参数)
Pytorch Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)
我是机器学习的初学者,正在尝试训练一个模型来计算长度为 10 的一维向量中小于 0.5 的数字的数量。输入向量包含 0 到 1 之间的数字。我生成输入我的脚本中的数据和标签,而不是将它们放在单独的文件中,因为数据非常简单。
这是代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.lin1 = nn.Linear(10,10)
self.lin2 = nn.Linear(10,1)
def forward(self,x):
x = self.lin1(x)
x = F.relu(x)
x = self.lin2(x)
return x
net = MyNet()
net.to(device)
def train():
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.1)
for epochs in range(100):
target = 0
data = torch.rand(10)
for entry in data:
if entry < 0.5:
target += 1
# print(target)
# print(data)
data = data.to(device)
out = net(data)
# print(out)
target = torch.Tensor(target)
target = target.to(device)
loss = criterion(out, target)
print(loss)
net.zero_grad()
loss.backward()
optimizer.step()
def test():
acc_error = 0
for i in range(100):
test_data = torch.rand(10)
test_data.to(device)
test_target = 0
for entry in test_data:
if entry < 0.5:
test_target += 1
out = net(test_data)
error = test_target - out
if error < 0:
error *= -1
acc_error += error
overall_error = acc_error / 100
print(overall_error)
train()
test()
这是错误:
Traceback (most recent call last):
File "test1.py", line 70, in <module>
test()
File "test1.py", line 59, in test
out = net(test_data)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "test1.py", line 15, in forward
x = self.lin1(x)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/linear.py", line 94, in forward
return F.linear(input, self.weight, self.bias)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/functional.py", line 1753, in linear
return torch._C._nn.linear(input, weight, bias)
RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)
关于该主题的其他帖子没有解决我的问题。也许有人可以提供帮助。谢谢!
请注意您的错误消息如何追溯到 test
,而 train
工作正常。
您已在 train
中正确传输数据:
data = data.to(device)
但不在 test
:
test_data.to(device)
相反,它应该重新分配给 test_data
,因为 torch.Tensor.to
制作了一个副本:
test_data = test_data.to(device)
我是机器学习的初学者,正在尝试训练一个模型来计算长度为 10 的一维向量中小于 0.5 的数字的数量。输入向量包含 0 到 1 之间的数字。我生成输入我的脚本中的数据和标签,而不是将它们放在单独的文件中,因为数据非常简单。 这是代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.lin1 = nn.Linear(10,10)
self.lin2 = nn.Linear(10,1)
def forward(self,x):
x = self.lin1(x)
x = F.relu(x)
x = self.lin2(x)
return x
net = MyNet()
net.to(device)
def train():
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.1)
for epochs in range(100):
target = 0
data = torch.rand(10)
for entry in data:
if entry < 0.5:
target += 1
# print(target)
# print(data)
data = data.to(device)
out = net(data)
# print(out)
target = torch.Tensor(target)
target = target.to(device)
loss = criterion(out, target)
print(loss)
net.zero_grad()
loss.backward()
optimizer.step()
def test():
acc_error = 0
for i in range(100):
test_data = torch.rand(10)
test_data.to(device)
test_target = 0
for entry in test_data:
if entry < 0.5:
test_target += 1
out = net(test_data)
error = test_target - out
if error < 0:
error *= -1
acc_error += error
overall_error = acc_error / 100
print(overall_error)
train()
test()
这是错误:
Traceback (most recent call last):
File "test1.py", line 70, in <module>
test()
File "test1.py", line 59, in test
out = net(test_data)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "test1.py", line 15, in forward
x = self.lin1(x)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/modules/linear.py", line 94, in forward
return F.linear(input, self.weight, self.bias)
File "/vol/fob-vol7/mi18/radtklau/SP/sem_project/lib64/python3.6/site-packages/torch/nn/functional.py", line 1753, in linear
return torch._C._nn.linear(input, weight, bias)
RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)
关于该主题的其他帖子没有解决我的问题。也许有人可以提供帮助。谢谢!
请注意您的错误消息如何追溯到 test
,而 train
工作正常。
您已在 train
中正确传输数据:
data = data.to(device)
但不在 test
:
test_data.to(device)
相反,它应该重新分配给 test_data
,因为 torch.Tensor.to
制作了一个副本:
test_data = test_data.to(device)