将 pandas 数据框中的列表传递给 TF IDF 的 sklearn

Passing list in pandas dataframe to sklearn for TF IDF

My dataframe look like this
a = pd.DataFrame({'x': {0: 'John', 1: 'Ron', 2: 'Don'}, 
                  'y': {0: [['Apple','Apple','Apple'],['Ball','Ball'],['Cat']], 1: [['Zebra','Zebra'],['Fox','Fox']], 2: [['Elf'],['Ball','Ball']]}})

其中 'x' 指文档,'y' 指术语(重复出现的次数)

我想传递给:

v = TfidfVectorizer()
z = v.fit_transform(a)

在我的读取数据中,这只是给我

z.toarray()
>array([[1.]])

哪个没有意义?

IIUC 使用列表理解来展平嵌套列表:

v = TfidfVectorizer()
z = [v.fit_transform([z for y in x for z in y]).toarray() for x in a['y']]

print (z)
[array([[1., 0., 0.],
       [1., 0., 0.],
       [1., 0., 0.],
       [0., 1., 0.],
       [0., 1., 0.],
       [0., 0., 1.]]), array([[0., 1.],
       [0., 1.],
       [1., 0.],
       [1., 0.]]), array([[0., 1.],
       [1., 0.],
       [1., 0.]])]