如何将列表的数据框列绘制为水平线

How to plot a dataframe column of lists as horizontal lines

我有一个包含列 'all_maxs' 的 Dataframe,它可以包含不同值的列表。

          c            all_maxs
38  50804.6           [50883.3]
39  50743.9           [50883.3]
40  50649.9           [50883.3]
41  50508.3           [50883.3]
42  50577.6           [50883.3]
43  50703.0           [50883.3]
44  50793.7           [50883.3]
45  50647.8  [50883.3, 50813.1]
46  50732.8  [50883.3, 50813.1]
47  50673.2  [50883.3, 50813.1]

df.plot(y='c')

当前结果

我需要绘制列 'c',列 'all_maxs' 的值应该是水平线。

预期结果

  1. 验证 'all_maxs' 值是 list 类型。
  2. 从列表中提取值并将它们绘制为水平线。
    • df = df.dropna() 如果有 NaN

导入和 DataFrame

  • 如果需要,使用 ast.liter_eval
  • 'all_maxs' 列类型从 str 转换为 list
import pandas as pd
from ast import literal_eval

data =\
{38: {'all_maxs': '[50883.3]', 'c': 50804.6},
 39: {'all_maxs': '[50883.3]', 'c': 50743.9},
 40: {'all_maxs': '[50883.3]', 'c': 50649.9},
 41: {'all_maxs': '[50883.3]', 'c': 50508.3},
 42: {'all_maxs': '[50883.3]', 'c': 50577.6},
 43: {'all_maxs': '[50883.3]', 'c': 50703.0},
 44: {'all_maxs': '[50883.3]', 'c': 50793.7},
 45: {'all_maxs': '[50883.3, 50813.1]', 'c': 50647.8},
 46: {'all_maxs': '[50883.3, 50813.1]', 'c': 50732.8},
 47: {'all_maxs': '[50883.3, 50813.1]', 'c': 50673.2}}

df = pd.DataFrame.from_dict(data, orient='index')

# reorder the columns to match the OP
df = df[['c', 'all_maxs']]

# print a value from all_maxs to see the type
>>> print(type(df.loc[38, 'all_maxs']))
str

# currently the all_max values are strings, which must be converted to list type
df.all_maxs = df.all_maxs.apply(literal_eval)

# print a value from all_maxs to see the type
>>> print(type(df.loc[38, 'all_maxs']))
list

情节

  • 直接用pandas.DataFrame.plot绘制数据帧
    • xticks=df.index 将为索引中的每个值创建一个 xtick,但如果有很多值挤在 x 轴上,请删除此参数。
  • 使用 matplotlib.pyplot.hlines,它将接受值列表,将 'all_max' 中的唯一值绘制为水平线。
    • 使用pandas.DataFrame.explode to remove all the values from lists, and then drop duplicates with .drop_duplicates
    • y= 将是 'all_maxs' 列中的剩余值
    • xmin=将是剩余的索引值
    • xmax= 将是从 df
    • 绘制的索引中的最大值
ax = df.plot(y='c', legend=False, figsize=(8, 5), xticks=df.index)

# extract all the values from all_maxs, drop the duplicates
all_maxs = df.all_maxs.explode().drop_duplicates().to_frame()

# add the horizontal lines
ax.hlines(y=all_maxs.all_maxs, xmin=all_maxs.index, xmax=df.index.max(), color='k')