当我的图形生成值为 0 时如何调整误差

How to adjust error when I have 0 values for graph generation

我在生成 03 月 7 日类别 ABC 的图表时遇到了一点问题。请注意,我可以正常生成两个图,但最后一个图不能。发生这种情况是因为我的 date/category 的值等于零,所以当涉及到 datas 时,它是 NA。但是,我想在这种情况发生时生成一个图形,在 0 处有一个点,在 0 处有一条红线,类似于其他图像。我相信要解决这个问题必须进行一些小的调整,但我做不到。感谢您的帮助!

下面的可执行代码:

library(dplyr)
library(tidyr)
library(lubridate)

df1 <- structure(
  list(date1= c("2021-06-28","2021-06-28","2021-06-28"),
       date2 = c("2021-07-01","2021-07-02","2021-07-03"),
       Category = c("BCE","ABC","ABC"),
       Week= c("Wednesday","Thursday","Friday"),
       DR1 = c(11,5,0),
       DR01 = c(10,4,0), DR02= c(2,4,0),DR03= c(0,5,0),
       DR04 = c(2,4,0),DR05 = c(1,6,0)),
  class = "data.frame", row.names = c(NA, -3L))


f1 <- function(dmda, CategoryChosse) {
  
  x<-df1 %>% select(starts_with("DR0"))
  
  x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
  PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
  
  med<-PV %>%
    group_by(Category,Week) %>%
    summarize(across(ends_with("PV"), median))
  
  SPV<-df1%>%
    inner_join(med, by = c('Category', 'Week')) %>%
    mutate(across(matches("^DR0\d+$"), ~.x + 
                    get(paste0(cur_column(), '_PV')),
                  .names = '{col}_{col}_PV')) %>%
    select(date1:Category, DR01_DR01_PV:last_col())
  
  SPV<-data.frame(SPV)
  
  mat1 <- df1 %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(starts_with("DR0")) %>%
    pivot_longer(cols = everything()) %>%
    arrange(desc(row_number())) %>%
    mutate(cs = cumsum(value)) %>%
    filter(cs == 0) %>%
    pull(name)
  
  (dropnames <- paste0(mat1,"_",mat1, "_PV"))
  
  SPV <- SPV %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(-any_of(dropnames))
  
  
  if(length(grep("DR0", names(SPV))) == 0) {
    SPV[head(mat1, 20)] <- NA_real_
  }
  
  datas <-SPV %>%
    filter(date2 == ymd(dmda)) %>%
    group_by(Category) %>%
    summarize(across(starts_with("DR0"), sum)) %>%
    pivot_longer(cols= -Category, names_pattern = "DR0(.+)", values_to = "val") %>%
    mutate(name = readr::parse_number(name))
  colnames(datas)[-1]<-c("Days","Numbers")
  
  
  datas <- datas %>% 
    group_by(Category) %>% 
    slice((as.Date(dmda) - min(as.Date(df1$date1) [
      df1$Category == first(Category)])):max(Days)+1) %>%
    ungroup
  
  m<-df1 %>%
    group_by(Category,Week) %>%
    summarize(across(starts_with("DR1"), mean))
  
  m<-subset(m, Week == df1$Week[match(ymd(dmda), ymd(df1$date2))] & Category == CategoryChosse)$DR1
  
  maxrange <-  range(0, datas$Numbers, na.rm = TRUE)
  maxrange[2] <- max(datas$Numbers)+ 20
  
  max<-max(datas$Days, na.rm = TRUE)+1

  
  plot(Numbers ~ Days,  xlim= c(0,max),  ylim= c(0,maxrange[2]),
       xaxs='i',data = datas,main = paste0(dmda, "-", CategoryChosse))
  
  if (nrow(datas)<=2){
    abline(h=m,lwd=2) 
    points(0, m, col = "red", pch = 19, cex = 2, xpd = TRUE)
    text(.1,m+ .5, round(m,1), cex=1.1,pos=4,offset =1,col="black")}

}

f1("2021-07-01", "BCE")

f1("2021-07-02", "ABC")

f1("2021-07-03", "ABC")
 Error in plot.window(...) : need finite 'xlim' values”
In addition: Warning messages:
1: In max(datas$Numbers) : no non-missing arguments to max; returning -Inf
2: In max(datas$Days, na.rm = TRUE) :

我们可以根据条件改变max值计算

...
 maxrange[2] <- if(nrow(datas) == 0) 20 else max(datas$Numbers)+ 20  
 max<- if(nrow(datas) ==0) 6 else max(datas$Days, na.rm = TRUE)+1
...

-完整代码

f1 <- function(dmda, CategoryChosse) {
  
  x<-df1 %>% select(starts_with("DR0"))
  
  x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
  PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
  
  med<-PV %>%
    group_by(Category,Week) %>%
    summarize(across(ends_with("PV"), median))
  
  SPV<-df1%>%
    inner_join(med, by = c('Category', 'Week')) %>%
    mutate(across(matches("^DR0\d+$"), ~.x + 
                    get(paste0(cur_column(), '_PV')),
                  .names = '{col}_{col}_PV')) %>%
    select(date1:Category, DR01_DR01_PV:last_col())
  
  SPV<-data.frame(SPV)
  
  mat1 <- df1 %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(starts_with("DR0")) %>%
    pivot_longer(cols = everything()) %>%
    arrange(desc(row_number())) %>%
    mutate(cs = cumsum(value)) %>%
    filter(cs == 0) %>%
    pull(name)
  
  (dropnames <- paste0(mat1,"_",mat1, "_PV"))
  
  SPV <- SPV %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(-any_of(dropnames))
  
  
  if(length(grep("DR0", names(SPV))) == 0) {
    SPV[head(mat1, 20)] <- NA_real_
  }
  
  datas <-SPV %>%
    filter(date2 == ymd(dmda)) %>%
    group_by(Category) %>%
    summarize(across(starts_with("DR0"), sum)) %>%
    pivot_longer(cols= -Category, names_pattern = "DR0(.+)", values_to = "val") %>%
    mutate(name = readr::parse_number(name))
  colnames(datas)[-1]<-c("Days","Numbers")
  
  
  datas <- datas %>% 
    group_by(Category) %>% 
    slice((as.Date(dmda) - min(as.Date(df1$date1) [
      df1$Category == first(Category)])):max(Days)+1) %>%
    ungroup
  
  m<-df1 %>%
    group_by(Category,Week) %>%
    summarize(across(starts_with("DR1"), mean))
  
  m<-subset(m, Week == df1$Week[match(ymd(dmda), ymd(df1$date2))] & Category == CategoryChosse)$DR1
  
  
  maxrange <-  range(0, datas$Numbers, na.rm = TRUE)
  maxrange[2] <- if(nrow(datas) == 0) 20 else max(datas$Numbers)+ 20
  
  max<- if(nrow(datas) ==0) 6 else max(datas$Days, na.rm = TRUE)+1

  
  plot(Numbers ~ Days,  xlim= c(0,max),  ylim= c(0,maxrange[2]),
       xaxs='i',data = datas,main = paste0(dmda, "-", CategoryChosse))
  
  if (nrow(datas)<=2){
    abline(h=m,lwd=2) 
    points(0, m, col = "red", pch = 19, cex = 2, xpd = TRUE)
    text(.1,m+ .5, round(m,1), cex=1.1,pos=4,offset =1,col="black")}

}

-测试

 f1("2021-07-03", "ABC")

-输出