Tensorflow Keras 多输入模型
Tensorflow Keras multiple input model
我需要针对两个文本列输入(而不是一列)调整此模型
tfhub_handle_encoder = \
"https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1"
tfhub_handle_preprocess = \
"https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
def build_classifier_model():
text_input = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model(text_input, net)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
history = classifier_model.fit(
x=X_train['f'].values,
y=y_train_c,
validation_data=(X_valid['f'].values, y_valid_c),
epochs=15)
这似乎是教程中的模型:https://www.tensorflow.org/text/tutorials/classify_text_with_bert
我已经尝试修改两个输入层的代码,但出现错误,因为在连接后存在错误的张量维度:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
text_input = tf.keras.layers.concatenate([input1, input2], axis=-1)
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], net)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
错误:
InvalidArgumentError: logits and labels must be broadcastable: logits_size=[64,6] labels_size=[32,6]
[[node categorical_crossentropy/softmax_cross_entropy_with_logits (defined at tmp/ipykernel_39/1837193519.py:5) ]] [Op:__inference_train_function_271676]
如果使用与另一个维度的连接,则模型无法编译
奇怪的是,在你的模型中用 tf.strings.join
替换你的 Concatenation
层似乎有效:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
text_input = tf.strings.join([input1, input2])
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
output = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], output)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
Epoch 1/5
497/1094 [============>.................] - ETA: 2:14 - loss: 1.8664 - accuracy: 0.1641
您也可以考虑简单地执行 text_input = input1 + input2
,因为 Concatenation
层似乎弄乱了批次维度。或者您可以将每个输入提供给您的 encoder
然后连接结果:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_input1 = preprocessing_layer(input1)
encoder_input2 = preprocessing_layer(input2)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
output1 = encoder(encoder_input1)
output2 = encoder(encoder_input2)
net = tf.keras.layers.Concatenate(axis=-1)([output1['pooled_output'], output2['pooled_output']])
net = tf.keras.layers.Dropout(0.1)(net)
output = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], output)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
我需要针对两个文本列输入(而不是一列)调整此模型
tfhub_handle_encoder = \
"https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1"
tfhub_handle_preprocess = \
"https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
def build_classifier_model():
text_input = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model(text_input, net)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
history = classifier_model.fit(
x=X_train['f'].values,
y=y_train_c,
validation_data=(X_valid['f'].values, y_valid_c),
epochs=15)
这似乎是教程中的模型:https://www.tensorflow.org/text/tutorials/classify_text_with_bert
我已经尝试修改两个输入层的代码,但出现错误,因为在连接后存在错误的张量维度:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
text_input = tf.keras.layers.concatenate([input1, input2], axis=-1)
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], net)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
错误:
InvalidArgumentError: logits and labels must be broadcastable: logits_size=[64,6] labels_size=[32,6]
[[node categorical_crossentropy/softmax_cross_entropy_with_logits (defined at tmp/ipykernel_39/1837193519.py:5) ]] [Op:__inference_train_function_271676]
如果使用与另一个维度的连接,则模型无法编译
奇怪的是,在你的模型中用 tf.strings.join
替换你的 Concatenation
层似乎有效:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
text_input = tf.strings.join([input1, input2])
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
output = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], output)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model
Epoch 1/5
497/1094 [============>.................] - ETA: 2:14 - loss: 1.8664 - accuracy: 0.1641
您也可以考虑简单地执行 text_input = input1 + input2
,因为 Concatenation
层似乎弄乱了批次维度。或者您可以将每个输入提供给您的 encoder
然后连接结果:
def build_classifier_model():
input1 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text')
input2 = tf.keras.layers.Input(
shape=(), dtype=tf.string, name='text1')
preprocessing_layer = hub.KerasLayer(
tfhub_handle_preprocess, name='preprocessing')
encoder_input1 = preprocessing_layer(input1)
encoder_input2 = preprocessing_layer(input2)
encoder = hub.KerasLayer(
tfhub_handle_encoder, trainable=True, name='BERT_encoder')
output1 = encoder(encoder_input1)
output2 = encoder(encoder_input2)
net = tf.keras.layers.Concatenate(axis=-1)([output1['pooled_output'], output2['pooled_output']])
net = tf.keras.layers.Dropout(0.1)(net)
output = tf.keras.layers.Dense(
6, activation='softmax', name='classifier')(net)
model = tf.keras.Model([input1, input2], output)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=False) # (from_logits=True)
metric = tf.metrics.CategoricalAccuracy('accuracy')
optimizer = Adam(
learning_rate=5e-05, epsilon=1e-08, decay=0.01, clipnorm=1.0)
model.compile(
optimizer=optimizer, loss=loss, metrics=metric)
model.summary()
return model