python pandas |指数
python pandas | index
volume
price
datetime
100
3
2021-09-29 04:00:00-04:00
300
2
2021-09-29 04:30:00-04:00
700
5
2021-09-29 05:30:00-04:00
500
9
2021-09-29 06:00:00-04:00
900
22
2021-09-29 06:30:00-04:00
400
29
2021-09-29 07:00:00-04:00
请帮忙解答以下2个问题
- return 交易量最大的日期时间
- return 交易量最大的索引号
pandasidmax
函数就是你想要的
import pandas as pd
data = [
[100, 3, '2021-09-29 04:00:00-04:00'],
[300, 2, '2021-09-29 04:30:00-04:00'],
[700, 5, '2021-09-29 05:30:00-04:00'],
[500, 9, '2021-09-29 06:00:00-04:00'],
[900, 22, '2021-09-29 06:30:00-04:00'],
[400, 29, '2021-09-29 07:00:00-04:00']
]
df = pd.DataFrame(data,columns=["volume","price","datetime"])
i = df["volume"].idxmax()
print(df.iloc[i])
输出:
volume 900
price 22
datetime 2021-09-29 06:30:00-04:00
Name: 4, dtype: object
volume | price | datetime |
---|---|---|
100 | 3 | 2021-09-29 04:00:00-04:00 |
300 | 2 | 2021-09-29 04:30:00-04:00 |
700 | 5 | 2021-09-29 05:30:00-04:00 |
500 | 9 | 2021-09-29 06:00:00-04:00 |
900 | 22 | 2021-09-29 06:30:00-04:00 |
400 | 29 | 2021-09-29 07:00:00-04:00 |
请帮忙解答以下2个问题
- return 交易量最大的日期时间
- return 交易量最大的索引号
pandasidmax
函数就是你想要的
import pandas as pd
data = [
[100, 3, '2021-09-29 04:00:00-04:00'],
[300, 2, '2021-09-29 04:30:00-04:00'],
[700, 5, '2021-09-29 05:30:00-04:00'],
[500, 9, '2021-09-29 06:00:00-04:00'],
[900, 22, '2021-09-29 06:30:00-04:00'],
[400, 29, '2021-09-29 07:00:00-04:00']
]
df = pd.DataFrame(data,columns=["volume","price","datetime"])
i = df["volume"].idxmax()
print(df.iloc[i])
输出:
volume 900
price 22
datetime 2021-09-29 06:30:00-04:00
Name: 4, dtype: object