将数据 table 转置为时间序列 table

Transpose a data table to a time-series table

我想知道如何将我的数据(1 行 = 参数)转置为时间序列(1 行 = 1 DateTime) 我从 pandas 尝试了 pivot_table 但是...输出中没有列

我希望按日期时间(索引)对值进行分组,然后为每个标记名分组 1 列,以便将值设为 Table 值

#df = my sample of data
df = pd.DataFrame(data= csv, columns = ['DateTime','TagName','Value'])
df.pivot_table(index='DateTime',columns='TagName',values='Value',aggfunc=np.mean)

原始数据:

1

我的 pivot_table 输出:

2

感谢您的帮助。

我的数据样本:

{'DateTime': {0: '2021-10-23 10:14:29.7270000',
 ​1: '2021-10-23 10:14:29.7270000',
 ​2: '2021-10-23 10:14:29.7270000',
 ​3: '2021-10-23 10:14:29.7270000',
 ​4: '2021-10-23 10:14:29.7270000',
 ​5: '2021-10-23 10:14:29.7270000',
 ​6: '2021-10-23 10:14:29.7270000',
 ​7: '2021-10-23 10:14:29.7270000',
 ​8: '2021-10-23 10:14:29.7270000',
 ​9: '2021-10-23 10:14:29.7270000'},
​'TagName': {0: 'DepollutionEntree.ChemineeOuvert',
 ​1: 'DepollutionEntree.ConsigneDepol',
 ​2: 'DepollutionEntree.TempForming',
 ​3: 'DepollutionSortie.ChemineeOuvert',
 ​4: 'DepollutionSortie.ConsigneDepol',
 ​5: 'DepollutionSortie.TempForming',
 ​6: 'Etuve.DebitGaz',
 ​7: 'FibrageB1_DebitEauDilution.PV',
 ​8: 'FibrageB2_DebitEauDilution.PV',
 ​9: 'FibrageB3_DebitEauDilution.PV'},
​'Value': {0: '0',
 ​1: '45',
 ​2: '59',
 ​3: '0',
 ​4: '66',
 ​5: '62',
 ​6: '6492604',
 ​7: '920.399963378906',
 ​8: '920.039978027344',
 ​9: '912'}}

试试 pivot:

output = df.pivot("DateTime", "TagName", "Value")

>>> output 
TagName                     DepollutionEntree.ChemineeOuvert  ... FibrageB3_DebitEauDilution.PV
DateTime                                                      ...                              
2021-10-23 10:14:29.7270000                                0  ...                           912

[1 rows x 10 columns]