X_train、y_train 来自转换后的数据
X_train, y_train from transformed data
数据转换后如何分别得到X_train和y_train
代码
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.preprocessing import StandardScaler
DATA=pd.read_csv("/storage/emulated/0/Download/iris-write-from-docker.csv")
X = DATA.drop(["class"], axis = 'columns')
y = DATA["class"].values
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.25,random_state = 42)
pipe=Pipeline(steps=[('clf',StandardScaler())])
dta=pipe.fit_transform(X_train,y_train)
print(dta)
#print(X_train,y_train) from dta
我想从 dta
获得转换后的 X_train
和 y_train
fit_transform()
的输出是 X_train
的转换版本。 y_train 在管道的 fit_transform() 期间未使用。
因此,您可以简单地执行以下操作来检索转换后的 X_train
,因为 y_train
保持不变:
pipe=Pipeline(steps=[('clf',StandardScaler())])
X_train_scaled = pipe.fit_transform(X_train)
数据转换后如何分别得到X_train和y_train
代码
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.preprocessing import StandardScaler
DATA=pd.read_csv("/storage/emulated/0/Download/iris-write-from-docker.csv")
X = DATA.drop(["class"], axis = 'columns')
y = DATA["class"].values
X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.25,random_state = 42)
pipe=Pipeline(steps=[('clf',StandardScaler())])
dta=pipe.fit_transform(X_train,y_train)
print(dta)
#print(X_train,y_train) from dta
我想从 dta
X_train
和 y_train
fit_transform()
的输出是 X_train
的转换版本。 y_train 在管道的 fit_transform() 期间未使用。
因此,您可以简单地执行以下操作来检索转换后的 X_train
,因为 y_train
保持不变:
pipe=Pipeline(steps=[('clf',StandardScaler())])
X_train_scaled = pipe.fit_transform(X_train)