多个 withColumn + when Spark 数据帧上的指令的全局条件

Global condition on multiple withColumn + when instruction on Spark dataframe

考虑这个 df

+----+------+
|cond|chaine|
+----+------+
|   0|   TF1|
|   1|   TF1|
|   1|   TNT|
+----+------+

我想应用此 withColumn 指令,但仅适用于具有 cond == 1:

的行
df.withColumn("New", when($"chaine" === "TF1", "YES!"))
  .withColumn("New2", when($"chaine" === "TF1", "YES2!"))
  .withColumn("New3", when($"chaine" === "TF1", "YES3!"))
  .withColumn("New4", when($"chaine" === "TF1", "YES4!"))

我不能使用 .filter,因为我仍然希望在输出中包含 cond =!= 1 的行。

我可以通过在代码的每个地方添加我的条件来做到这一点:

df.withColumn("New", when($"chaine" === "TF1" AND $"cond" === 1, "YES!"))
  .withColumn("New2", when($"chaine" === "TF1" AND $"cond" === 1, "YES2!"))
  .withColumn("New3", when($"chaine" === "TF1" AND $"cond" === 1, "YES3!"))
  .withColumn("New4", when($"chaine" === "TF1" AND $"cond" === 1, "YES4!"))

但问题是我有很多新专栏,我想要一个更好的解决方案(比如全局配置?)

谢谢。

一些简单的句法思路:

def whenCondIs(n: Int)(condition: Column, value: Any): Column =
  when(condition && $"cond" === n, value)

def whenOne(condition: Column, value: Any): Column  = 
  whenCondIs(1)(condition, value)

然后:

df.withColumn("New", whenOne($"chaine" === "TF1", "YES2!"))
  .withColumn("New2", whenOne($"chaine" === "TF1", "YES2!"))

您可以在列表中创建条件和新列之间的映射,然后使用 foldLeft 将它们添加到您的数据框中。像这样:

val newCols = Seq(
  ("New", "chaine='TF1'", "YES!"),
  ("New2", "chaine='TF1'", "YES2!"),
  ("New3", "chaine='TF1'", "YES3!"),
  ("New4", "chaine='TF1'", "YES4!")
)

val df1 = newCols.foldLeft(df)((acc, x) =>
  acc.withColumn(x._1, when(expr(x._2) && col("cond")===1, lit(x._3)))
)