根据一些规则,如何扩展Pandas中的数据?
Based on some rules, how to expand data in Pandas?
请原谅我的英文。希望能说清楚
假设我们有这个数据:
>>> data = {'Span':[3,3.5], 'Low':[6.2,5.16], 'Medium':[4.93,4.1], 'High':[3.68,3.07], 'VeryHigh':[2.94,2.45], 'ExtraHigh':[2.48,2.06], '0.9':[4.9,3.61], '1.5':[3.23,2.38], '2':[2.51,1.85]}
>>> df = pd.DataFrame(data)
>>> df
Span Low Medium High VeryHigh ExtraHigh 0.9 1.5 2
0 3.0 6.20 4.93 3.68 2.94 2.48 4.90 3.23 2.51
1 3.5 5.16 4.10 3.07 2.45 2.06 3.61 2.38 1.85
我想得到这个数据:
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85
原则适用于df
:
Span
通过 Wind
和 Snow
的组合扩展得到 MaxSpacing
Wind
和 Snow
是 mutually exclusive
。当Wind
为'Low', 'Medium', 'High', 'VeryHigh', 'ExtraHigh'
之一时,Snow
为零;当 Snow
是 0.9, 1.5, 2
之一时,Wind
是零。
请帮忙。谢谢。
使用 DataFrame.melt
for unpivot and then sorting by indices, create Snow
column by to_numeric
and Series.fillna
in DataFrame.insert
并为 Wind
列最后设置 0
:
df = (df.melt('Span', ignore_index=False, var_name='Wind', value_name='MaxSpacing')
.sort_index(ignore_index=True))
s = pd.to_numeric(df['Wind'], errors='coerce')
df.insert(2, 'Snow', s.fillna(0))
df.loc[s.notna(), 'Wind'] = 0
print (df)
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85
DataFrame.set_index
and DataFrame.stack
的替代解决方案:
df = df.set_index('Span').rename_axis('Wind', axis=1).stack().reset_index(name='MaxSpacing')
s = pd.to_numeric(df['Wind'], errors='coerce')
df.insert(2, 'Snow', s.fillna(0))
df.loc[s.notna(), 'Wind'] = 0
print (df)
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85
请原谅我的英文。希望能说清楚
假设我们有这个数据:
>>> data = {'Span':[3,3.5], 'Low':[6.2,5.16], 'Medium':[4.93,4.1], 'High':[3.68,3.07], 'VeryHigh':[2.94,2.45], 'ExtraHigh':[2.48,2.06], '0.9':[4.9,3.61], '1.5':[3.23,2.38], '2':[2.51,1.85]}
>>> df = pd.DataFrame(data)
>>> df
Span Low Medium High VeryHigh ExtraHigh 0.9 1.5 2
0 3.0 6.20 4.93 3.68 2.94 2.48 4.90 3.23 2.51
1 3.5 5.16 4.10 3.07 2.45 2.06 3.61 2.38 1.85
我想得到这个数据:
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85
原则适用于df
:
Span
通过Wind
和Snow
的组合扩展得到MaxSpacing
Wind
和Snow
是mutually exclusive
。当Wind
为'Low', 'Medium', 'High', 'VeryHigh', 'ExtraHigh'
之一时,Snow
为零;当Snow
是0.9, 1.5, 2
之一时,Wind
是零。
请帮忙。谢谢。
使用 DataFrame.melt
for unpivot and then sorting by indices, create Snow
column by to_numeric
and Series.fillna
in DataFrame.insert
并为 Wind
列最后设置 0
:
df = (df.melt('Span', ignore_index=False, var_name='Wind', value_name='MaxSpacing')
.sort_index(ignore_index=True))
s = pd.to_numeric(df['Wind'], errors='coerce')
df.insert(2, 'Snow', s.fillna(0))
df.loc[s.notna(), 'Wind'] = 0
print (df)
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85
DataFrame.set_index
and DataFrame.stack
的替代解决方案:
df = df.set_index('Span').rename_axis('Wind', axis=1).stack().reset_index(name='MaxSpacing')
s = pd.to_numeric(df['Wind'], errors='coerce')
df.insert(2, 'Snow', s.fillna(0))
df.loc[s.notna(), 'Wind'] = 0
print (df)
Span Wind Snow MaxSpacing
0 3.0 Low 0.0 6.20
1 3.0 Medium 0.0 4.93
2 3.0 High 0.0 3.68
3 3.0 VeryHigh 0.0 2.94
4 3.0 ExtraHigh 0.0 2.48
5 3.0 0 0.9 4.90
6 3.0 0 1.5 3.23
7 3.0 0 2.0 2.51
8 3.5 Low 0.0 5.16
9 3.5 Medium 0.0 4.10
10 3.5 High 0.0 3.07
11 3.5 VeryHigh 0.0 2.45
12 3.5 ExtraHigh 0.0 2.06
13 3.5 0 0.9 3.61
14 3.5 0 1.5 2.38
15 3.5 0 2.0 1.85