从给定输入读取多个数据帧
Reading multiple DataFrames from a given input
我有几个数据框是这样给出的:
38 47 7 20 35
45 76 63 96 24
98 53 2 87 80
83 86 92 48 1
73 60 26 94 6
80 50 29 53 92
66 90 79 98 46
40 21 58 38 60
35 13 72 28 6
48 76 51 96 12
79 80 24 37 51
86 70 1 22 71
52 69 10 83 13
12 40 3 0 30
46 50 48 76 5
能否请您告诉我如何将它们添加到数据帧列表中?
非常感谢!
首先将值转换为带有分隔符缺失值的 DataFrame
(从空行转换而来):
df = pd.read_csv(file, header=None, skip_blank_lines=False)
print (df)
0 1 2 3 4
0 38.0 47.0 7.0 20.0 35.0
1 45.0 76.0 63.0 96.0 24.0
2 98.0 53.0 2.0 87.0 80.0
3 83.0 86.0 92.0 48.0 1.0
4 73.0 60.0 26.0 94.0 6.0
5 NaN NaN NaN NaN NaN
6 80.0 50.0 29.0 53.0 92.0
7 66.0 90.0 79.0 98.0 46.0
8 40.0 21.0 58.0 38.0 60.0
9 35.0 13.0 72.0 28.0 6.0
10 48.0 76.0 51.0 96.0 12.0
11 NaN NaN NaN NaN NaN
12 79.0 80.0 24.0 37.0 51.0
13 86.0 70.0 1.0 22.0 71.0
14 52.0 69.0 10.0 83.0 13.0
15 12.0 40.0 3.0 0.0 30.0
16 46.0 50.0 48.0 76.0 5.0
然后在列表理解中在列表中创建更小的 DataFrame:
dfs = [g.iloc[1:].astype(int).reset_index(drop=True)
for _, g in df.groupby(df[0].isna().cumsum())]
print (dfs[1])
0 1 2 3 4
0 80 50 29 53 92
1 66 90 79 98 46
2 40 21 58 38 60
3 35 13 72 28 6
4 48 76 51 96 12
我有几个数据框是这样给出的:
38 47 7 20 35
45 76 63 96 24
98 53 2 87 80
83 86 92 48 1
73 60 26 94 6
80 50 29 53 92
66 90 79 98 46
40 21 58 38 60
35 13 72 28 6
48 76 51 96 12
79 80 24 37 51
86 70 1 22 71
52 69 10 83 13
12 40 3 0 30
46 50 48 76 5
能否请您告诉我如何将它们添加到数据帧列表中?
非常感谢!
首先将值转换为带有分隔符缺失值的 DataFrame
(从空行转换而来):
df = pd.read_csv(file, header=None, skip_blank_lines=False)
print (df)
0 1 2 3 4
0 38.0 47.0 7.0 20.0 35.0
1 45.0 76.0 63.0 96.0 24.0
2 98.0 53.0 2.0 87.0 80.0
3 83.0 86.0 92.0 48.0 1.0
4 73.0 60.0 26.0 94.0 6.0
5 NaN NaN NaN NaN NaN
6 80.0 50.0 29.0 53.0 92.0
7 66.0 90.0 79.0 98.0 46.0
8 40.0 21.0 58.0 38.0 60.0
9 35.0 13.0 72.0 28.0 6.0
10 48.0 76.0 51.0 96.0 12.0
11 NaN NaN NaN NaN NaN
12 79.0 80.0 24.0 37.0 51.0
13 86.0 70.0 1.0 22.0 71.0
14 52.0 69.0 10.0 83.0 13.0
15 12.0 40.0 3.0 0.0 30.0
16 46.0 50.0 48.0 76.0 5.0
然后在列表理解中在列表中创建更小的 DataFrame:
dfs = [g.iloc[1:].astype(int).reset_index(drop=True)
for _, g in df.groupby(df[0].isna().cumsum())]
print (dfs[1])
0 1 2 3 4
0 80 50 29 53 92
1 66 90 79 98 46
2 40 21 58 38 60
3 35 13 72 28 6
4 48 76 51 96 12