networkx 中的边权重

Edge weight in networkx

如何为每条边分配一个权重,该权重等于节点 i 和 j 从边列表交互的次数?

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import scipy.sparse

df = pd.read_csv("thiers_2011.csv", header = None)
df = df.rename(columns={0: "t", 1: "id1", 2: "id2", 3: "C1", 4: "C2"})

edge_list = np.zeros((len(df),2))
edge_list[:,0] = np.array(df["id1"]) 
edge_list[:,1] = np.array(df["id2"]) 

G = nx.Graph()
G.add_edges_from(edge_list)

您可以先将 pandas 表聚合成一个权重列,然后将其加载到 networkx 和边缘列:

df["weight"] = 1.0
df = df.groupby([<id_columns>]).agg({"wight": sum}).reset_index()

要加载它,您还可以使用 from_pandas_edgelist:

G = nx.from_pandas_edgelist(source='source_column', target='target_column', edge_attr="weight")