如何将一个 Functional Resnet50 模型分解为多层

How to break one Functional Resnet50 model into multiple layer

我使用以下方法创建了 Resnet50:

     base_model = tf.keras.applications.ResNet50(include_top=False, weights=None, input_shape=(224, 224, 3))
    base_model.trainable = True
    
    inputs = Input((224, 224, 3))
    h = base_model(inputs, training=True)
    model = Model(inputs, projection_3)

模型摘要:

Layer (type)                Output Shape              Param #   
=================================================================
 input_image (InputLayer)    [(None, 256, 256, 3)]     0         
                                                                 
 resnet50 (Functional)       (None, 8, 8, 2048)        23587712  
                                                                 
=================================================================

后来,我意识到我需要像这样访问一些层:

Resmodel.layers[4].output

然而,我得到了:

IndexError: list index out of range

是否可以将 Resnet50 功能模型分解为多个层或 是否可以访问模型的特定层

试试这个

model.layers[1].layers[4]