使用单独的方程编号修复多行方程的对齐

Fix alignment of multiline equations with separate equation number

我正在编写以下多行方程组,每行都需要一个单独的方程编号。我目前坚持这个方程式的对齐。有什么帮助吗?有没有更好的方法使用包来做到这一点?谢谢!

\documentclass[10pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\begin{document}
    \begin{align}
        G_{1}^{e x}=& \sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{j k l} Y^{j} Z^{k} U^{\prime} 
    \end{align}
    
    \begin{equation}
        \begin{aligned}
            G_{2}^{e x}=&-\sum_{2}^{j^{\prime}} A_{j 00} /(1-j)+\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} \
            &\left\{A_{j k l} Y^{j} Z^{k} U^{l}\{1+(j-k) /[Y(1-j)]\}\right\} \
        \end{aligned}
    \end{equation}
    
    
    \begin{equation}
        \begin{aligned}
            G_{3}^{e x}=&-\sum_{2} \sum_{0} A_{j k 0} /(1-j)+\sum_{2} \sum_{0} \sum_{0} \
            &\{A _ { j k l } Y ^ { j } Z ^ { k } U ^ { l } \{1+(j-k) /[Y(1-j)]\    
            &+(k-l) /[Y Z(1-j)]\}\} \
            %G_{4}^{e x}=&-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{j k l} /(1-j)+\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} \
            %   &\left\{A _ { j k l } Y ^ { j } Z ^ { k } U ^ { l } \left\{1+(j-k) /[Y(1-j)]\right.\
            %   &+(k-l) /[Y Z(1-j)]+l /[Y Z U(1-j)]\}\}
        \end{aligned}
    \end{equation}
    
    \begin{equation}
        \begin{aligned}
            G_{4}^{e x}=&-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{Y} /(1-\mathrm{j})-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l} A_{\mathrm{jkl}} \mathrm{Y}^{\mathrm{j}} \mathrm{Z} \mathrm{T}^{\mathrm{j}} \
            &\{1+[(\mathrm{j}-\mathrm{k}) / \mathrm{Y}(1-\mathrm{j})]+[(\mathrm{k}-1) / \mathrm{YZ}(1-\mathrm{j})]+\
            &[1 / \mathrm{YZT}(1-\mathrm{j})]\}
        \end{aligned}
    \end{equation}
    \begin{equation}
        \begin{aligned}
            G^{e x}=&-\sum_{2}^{j^{\prime}} A_{\mathrm{j} 00} \mathrm{Y} /(1-\mathrm{j})-\sum_{2}^{j^{\prime}} \sum_{1}^{k^{\prime}} A_{\mathrm{jk} 0} \mathrm{YZ} /(1-\mathrm{j})-\
            & \sum_{2}^{j^{\prime}} \sum_{1}^{k^{\prime}} \sum_{1}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{YZT} /(1-\mathrm{j})+\
            & \sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{Y}^{\mathrm{j}} \mathrm{Z}^{\mathrm{k}} \mathrm{T}^{1} /(1-\mathrm{j})
        \end{aligned}
    \end{equation}
\end{document}

也许使用单个 align,然后用 \notag?

排除所有不需要自己的方程编号的行
\documentclass[10pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\begin{document}
    \begin{align}
        G_{1}^{e x}=& \sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{j k l} Y^{j} Z^{k} U^{\prime} \
            G_{2}^{e x}=&-\sum_{2}^{j^{\prime}} A_{j 00} /(1-j)+\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} \
            &\left\{A_{j k l} Y^{j} Z^{k} U^{l}\{1+(j-k) /[Y(1-j)]\}\right\} \notag\
            G_{3}^{e x}=&-\sum_{2} \sum_{0} A_{j k 0} /(1-j)+\sum_{2} \sum_{0} \sum_{0} \
            &\{A _ { j k l } Y ^ { j } Z ^ { k } U ^ { l } \{1+(j-k) /[Y(1-j)]\notag\    
            &+(k-l) /[Y Z(1-j)]\}\} \notag\
            %G_{4}^{e x}=&-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{j k l} /(1-j)+\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} \
            %   &\left\{A _ { j k l } Y ^ { j } Z ^ { k } U ^ { l } \left\{1+(j-k) /[Y(1-j)]\right.\
            %   &+(k-l) /[Y Z(1-j)]+l /[Y Z U(1-j)]\}\}
            G_{4}^{e x}=&-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{Y} /(1-\mathrm{j})-\sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l} A_{\mathrm{jkl}} \mathrm{Y}^{\mathrm{j}} \mathrm{Z} \mathrm{T}^{\mathrm{j}} \
            &\{1+[(\mathrm{j}-\mathrm{k}) / \mathrm{Y}(1-\mathrm{j})]+[(\mathrm{k}-1) / \mathrm{YZ}(1-\mathrm{j})]+\notag\
            &[1 / \mathrm{YZT}(1-\mathrm{j})]\}\notag\
            G^{e x}=&-\sum_{2}^{j^{\prime}} A_{\mathrm{j} 00} \mathrm{Y} /(1-\mathrm{j})-\sum_{2}^{j^{\prime}} \sum_{1}^{k^{\prime}} A_{\mathrm{jk} 0} \mathrm{YZ} /(1-\mathrm{j})-\
            & \sum_{2}^{j^{\prime}} \sum_{1}^{k^{\prime}} \sum_{1}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{YZT} /(1-\mathrm{j})+\notag\
            & \sum_{2}^{j^{\prime}} \sum_{0}^{k^{\prime}} \sum_{0}^{l^{\prime}} A_{\mathrm{jkl}} \mathrm{Y}^{\mathrm{j}} \mathrm{Z}^{\mathrm{k}} \mathrm{T}^{1} /(1-\mathrm{j})\notag
        \end{align}
\end{document}