IndexError: tensors used as indices must be long, byte or bool tensors - Pytorch

IndexError: tensors used as indices must be long, byte or bool tensors - Pytorch

我正在使用来自此 Repository 的预训练图像字幕模型,但我收到此错误,尽管我将类型更改为 long!!

错误:

File "caption.py", line 213, in seq, alphas = caption_image_beam_search(encoder, decoder, args.img, word_map, args.beam_size) File "caption.py", line 111, in caption_image_beam_search seqs = torch.cat([seqs[prev_word_inds].long(), next_word_inds.unsqueeze(1)], dim=1) # (s, step+1) IndexError: tensors used as indices must be long, byte or bool tensors

代码:

def caption_image_beam_search(encoder, decoder, image_path, word_map, beam_size=3):

    k = beam_size
    vocab_size = len(word_map)

    # Read image and process
    img = imageio.imread(image_path)
    if len(img.shape) == 2:
        img = img[:, :, np.newaxis]
        img = np.concatenate([img, img, img], axis=2)
    img = skimage.transform.resize(img, (256, 256))
    img = img.transpose(2, 0, 1)
    img = img / 255.
    img = torch.FloatTensor(img).to(device)
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    transform = transforms.Compose([normalize])
    image = transform(img)  # (3, 256, 256)

    # Encode
    image = image.unsqueeze(0)  # (1, 3, 256, 256)
    encoder_out = encoder(image)  # (1, enc_image_size, enc_image_size, encoder_dim)
    enc_image_size = encoder_out.size(1)
    encoder_dim = encoder_out.size(3)

    # Flatten encoding
    encoder_out = encoder_out.view(1, -1, encoder_dim)  # (1, num_pixels, encoder_dim)
    num_pixels = encoder_out.size(1)

    # We'll treat the problem as having a batch size of k
    encoder_out = encoder_out.expand(k, num_pixels, encoder_dim)  # (k, num_pixels, encoder_dim)

    # Tensor to store top k previous words at each step; now they're just <start>
    k_prev_words = torch.LongTensor([[word_map['<start>']]] * k).to(device)  # (k, 1)

    # Tensor to store top k sequences; now they're just <start>
    seqs = k_prev_words  # (k, 1)

    # Tensor to store top k sequences' scores; now they're just 0
    top_k_scores = torch.zeros(k, 1).to(device)  # (k, 1)

    # Tensor to store top k sequences' alphas; now they're just 1s
    seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to(device)  # (k, 1, enc_image_size, enc_image_size)

    # Lists to store completed sequences, their alphas and scores
    complete_seqs = list()
    complete_seqs_alpha = list()
    complete_seqs_scores = list()

    # Start decoding
    step = 1
    h, c = decoder.init_hidden_state(encoder_out)

    # s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
    while True:

        embeddings = decoder.embedding(k_prev_words).squeeze(1)  # (s, embed_dim)

        awe, alpha = decoder.attention(encoder_out, h)  # (s, encoder_dim), (s, num_pixels)

        alpha = alpha.view(-1, enc_image_size, enc_image_size)  # (s, enc_image_size, enc_image_size)

        gate = decoder.sigmoid(decoder.f_beta(h))  # gating scalar, (s, encoder_dim)
        awe = gate * awe

        h, c = decoder.decode_step(torch.cat([embeddings, awe], dim=1), (h, c))  # (s, decoder_dim)

        scores = decoder.fc(h)  # (s, vocab_size)
        scores = F.log_softmax(scores, dim=1)

        # Add
        scores = top_k_scores.expand_as(scores) + scores  # (s, vocab_size)

        # For the first step, all k points will have the same scores (since same k previous words, h, c)
        if step == 1:
            top_k_scores, top_k_words = scores[0].topk(k, 0, True, True)  # (s)
        else:
            # Unroll and find top scores, and their unrolled indices
            top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True)  # (s)

        # Convert unrolled indices to actual indices of scores
        prev_word_inds = top_k_words / vocab_size  # (s)
        next_word_inds = top_k_words % vocab_size  # (s)

        # Add new words to sequences, alphas
        seqs = torch.cat([seqs[prev_word_inds].long(), next_word_inds.unsqueeze(1)], dim=1)  # (s, step+1)
        seqs_alpha = torch.cat([seqs_alpha[prev_word_inds].long(), alpha[prev_word_inds].unsqueeze(1)],
                               dim=1)  # (s, step+1, enc_image_size, enc_image_size)

        # Which sequences are incomplete (didn't reach <end>)?
        incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
                           next_word != word_map['<end>']]
        complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))

        # Set aside complete sequences
        if len(complete_inds) > 0:
            complete_seqs.extend(seqs[complete_inds].tolist())
            complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist())
            complete_seqs_scores.extend(top_k_scores[complete_inds])
        k -= len(complete_inds)  # reduce beam length accordingly

        # Proceed with incomplete sequences
        if k == 0:
            break
        seqs = seqs[incomplete_inds]
        seqs_alpha = seqs_alpha[incomplete_inds]
        h = h[prev_word_inds[incomplete_inds]]
        c = c[prev_word_inds[incomplete_inds]]
        encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
        top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
        k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)

        # Break if things have been going on too long
        if step > 50:
            break
        step += 1

    i = complete_seqs_scores.index(max(complete_seqs_scores))
    seq = complete_seqs[i]
    alphas = complete_seqs_alpha[i]

    return seq, alphas

您投错了 long 的部分:

seqs[prev_word_inds].long()

应该是:

seqs[prev_word_inds.long()]

也出现在计算 seqs_alpha 的下一行中。 虽然我不完全确定你如何将它们转换为 long (non-decimal) 就像你在上面的行中推导出 prev_word_inds as:

prev_word_inds = top_k_words / vocab_size
seqs = torch.cat([seqs[prev_word_inds.long()], \
        next_word_inds.unsqueeze(1)], dim=1)  # (s, step+1)

当 pytorch 已经给出 topk 的第二个输出时?为什么要除以词汇量?