由于类型不稳定导致的性能差异?
Peformance difference due to type instability?
我正在 Julia 0.4-prerelease 中尝试以下代码,它以两种不同的方式执行矩阵求幂(精确展开与级数展开)。我尝试使用几种方法来获取数组维度 n
和设置单位矩阵 eye( n )
.
function test()
A = [ 1.0 -1.0 ; -1.0 1.0 ]
lam, U = eig( A ) # diagonalization: A U = U diagm(lam)
Bref = U * diagm( exp(lam) ) * U' # Bref = exp(A) (in matrix sense)
#[ Get the dimension n ]
n = length( lam ) # slow (1a)
# const n = length( lam ) # slow (1b)
# n::Int = length( lam ) # fast (1c)
# const n::Int = length( lam ) # fast (1d)
# n = size( A, 1 ) # fast (1e)
#[ Set unit matrices to B and X ]
B = eye( n ); X = eye( n ) # slow with (1a) (2-1)
# B = eye( 2 ); X = eye( 2 ) # fast (2-2)
# B = eye( n::Int ); X = eye( n::Int ) # fast (2-3)
# B::Array{Float64,2} = eye( n ); X::Array{Float64,2} = eye( n ) # fast (2-4)
# B = eye( A ); X = eye( A ) # fast (2-5)
#[ Calc B = exp(A) with Taylor expansion ]
@time for k = 1:20
X[:,:] = X * A / float( k )
B[:,:] += X
end
#[ Check error ]
@show norm( B - Bref )
end
test()
在这里我观察到当 n 是一个动态变量(没有类型注释)时,代码变得比其他情况慢得多。例如,(1a) 和 (2-1) 的组合给出
下面的 "slow" 结果,而其他组合给出 "fast" 结果(快 1000 多倍)。
slow case => elapsed time: 0.043822985 seconds (1 MB allocated)
fast case => elapsed time: 1.1702e-5 seconds (16 kB allocated)
这是因为 "type instability" 发生在 for 循环中吗?我很困惑,因为 eye( n )
总是 Array{Float64,2}
(仅用于初始化)并且似乎没有(隐式)类型更改。同样令人困惑的是 (1e) 和 (2-1) 的组合很快,其中动态 n
是用 size() 而不是 length() 设置的。总体而言,为了获得良好的性能,显式注释数组维度变量是否更好?
我认为区别主要在于编译时间。如果我再放两个 test()
s,我会得到以下结果:
与 2-1
和 1a
:
73.599 milliseconds (70583 allocations: 3537 KB)
norm(B - Bref) = 4.485301019485633e-14
15.165 microseconds (200 allocations: 11840 bytes)
norm(B - Bref) = 4.485301019485633e-14
10.844 microseconds (200 allocations: 11840 bytes)
norm(B - Bref) = 4.485301019485633e-14
与 2-2
和 1a
:
8.662 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
7.968 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
7.654 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
虽然编译时间的差异来自不同的编译代码。那,以及剩下的一些时间上的小差异,实际上是来自类型的不稳定性。查看 @code_warntype test()
的这一部分以获得 1a
版本:
GenSym(0) = (Base.LinAlg.__eig#214__)(GenSym(19),A::Array{Float64,2})::Tuple{Any,Any}
#s8 = 1
GenSym(22) = (Base.getfield)(GenSym(0),1)::Any
GenSym(23) = (Base.box)(Base.Int,(Base.add_int)(1,1)::Any)::Int64
lam = GenSym(22)
#s8 = GenSym(23)
GenSym(24) = (Base.getfield)(GenSym(0),2)::Any
GenSym(25) = (Base.box)(Base.Int,(Base.add_int)(2,1)::Any)::Int64
U = GenSym(24)
#s8 = GenSym(25) # line 7:
Bref = U * (Main.diagm)((Main.exp)(lam)::Any)::Any * (Main.ctranspose)(U)::Any::Any # line 9:
n = (Main.length)(lam)::Any # line 11:
B = (Main.eye)(n)::Any # line 11:
X = (Main.eye)(n)::Any # line 13: # util.jl, line 170:
我读到的是类型推断未能找出 eig
的 return 类型。这然后传播到 B 和 X。如果您添加 n::Int
,最后一行更改为
n = (top(typeassert))((top(convert))(Main.Int,(Main.length)(lam)::Any)::Any,Main.Int)::Int64 # line 11:
B = (Base.eye)(Base.Float64,n::Int64,n::Int64)::Array{Float64,2} # line 11:
X = (Base.eye)(Base.Float64,n::Int64,n::Int64)::Array{Float64,2} # line 13: # util.jl, line 170:
所以 B
和 X
输入正确。 An issue about this exact subject was raised recently - 如果您想获得最佳性能,除了自己注释之外似乎没有太多选择。
我正在 Julia 0.4-prerelease 中尝试以下代码,它以两种不同的方式执行矩阵求幂(精确展开与级数展开)。我尝试使用几种方法来获取数组维度 n
和设置单位矩阵 eye( n )
.
function test()
A = [ 1.0 -1.0 ; -1.0 1.0 ]
lam, U = eig( A ) # diagonalization: A U = U diagm(lam)
Bref = U * diagm( exp(lam) ) * U' # Bref = exp(A) (in matrix sense)
#[ Get the dimension n ]
n = length( lam ) # slow (1a)
# const n = length( lam ) # slow (1b)
# n::Int = length( lam ) # fast (1c)
# const n::Int = length( lam ) # fast (1d)
# n = size( A, 1 ) # fast (1e)
#[ Set unit matrices to B and X ]
B = eye( n ); X = eye( n ) # slow with (1a) (2-1)
# B = eye( 2 ); X = eye( 2 ) # fast (2-2)
# B = eye( n::Int ); X = eye( n::Int ) # fast (2-3)
# B::Array{Float64,2} = eye( n ); X::Array{Float64,2} = eye( n ) # fast (2-4)
# B = eye( A ); X = eye( A ) # fast (2-5)
#[ Calc B = exp(A) with Taylor expansion ]
@time for k = 1:20
X[:,:] = X * A / float( k )
B[:,:] += X
end
#[ Check error ]
@show norm( B - Bref )
end
test()
在这里我观察到当 n 是一个动态变量(没有类型注释)时,代码变得比其他情况慢得多。例如,(1a) 和 (2-1) 的组合给出 下面的 "slow" 结果,而其他组合给出 "fast" 结果(快 1000 多倍)。
slow case => elapsed time: 0.043822985 seconds (1 MB allocated)
fast case => elapsed time: 1.1702e-5 seconds (16 kB allocated)
这是因为 "type instability" 发生在 for 循环中吗?我很困惑,因为 eye( n )
总是 Array{Float64,2}
(仅用于初始化)并且似乎没有(隐式)类型更改。同样令人困惑的是 (1e) 和 (2-1) 的组合很快,其中动态 n
是用 size() 而不是 length() 设置的。总体而言,为了获得良好的性能,显式注释数组维度变量是否更好?
我认为区别主要在于编译时间。如果我再放两个 test()
s,我会得到以下结果:
与 2-1
和 1a
:
73.599 milliseconds (70583 allocations: 3537 KB)
norm(B - Bref) = 4.485301019485633e-14
15.165 microseconds (200 allocations: 11840 bytes)
norm(B - Bref) = 4.485301019485633e-14
10.844 microseconds (200 allocations: 11840 bytes)
norm(B - Bref) = 4.485301019485633e-14
与 2-2
和 1a
:
8.662 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
7.968 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
7.654 microseconds (180 allocations: 11520 bytes)
norm(B - Bref) = 4.485301019485633e-14
虽然编译时间的差异来自不同的编译代码。那,以及剩下的一些时间上的小差异,实际上是来自类型的不稳定性。查看 @code_warntype test()
的这一部分以获得 1a
版本:
GenSym(0) = (Base.LinAlg.__eig#214__)(GenSym(19),A::Array{Float64,2})::Tuple{Any,Any}
#s8 = 1
GenSym(22) = (Base.getfield)(GenSym(0),1)::Any
GenSym(23) = (Base.box)(Base.Int,(Base.add_int)(1,1)::Any)::Int64
lam = GenSym(22)
#s8 = GenSym(23)
GenSym(24) = (Base.getfield)(GenSym(0),2)::Any
GenSym(25) = (Base.box)(Base.Int,(Base.add_int)(2,1)::Any)::Int64
U = GenSym(24)
#s8 = GenSym(25) # line 7:
Bref = U * (Main.diagm)((Main.exp)(lam)::Any)::Any * (Main.ctranspose)(U)::Any::Any # line 9:
n = (Main.length)(lam)::Any # line 11:
B = (Main.eye)(n)::Any # line 11:
X = (Main.eye)(n)::Any # line 13: # util.jl, line 170:
我读到的是类型推断未能找出 eig
的 return 类型。这然后传播到 B 和 X。如果您添加 n::Int
,最后一行更改为
n = (top(typeassert))((top(convert))(Main.Int,(Main.length)(lam)::Any)::Any,Main.Int)::Int64 # line 11:
B = (Base.eye)(Base.Float64,n::Int64,n::Int64)::Array{Float64,2} # line 11:
X = (Base.eye)(Base.Float64,n::Int64,n::Int64)::Array{Float64,2} # line 13: # util.jl, line 170:
所以 B
和 X
输入正确。 An issue about this exact subject was raised recently - 如果您想获得最佳性能,除了自己注释之外似乎没有太多选择。