在列上连接 pandas 个数据帧,类似于外部合并

Concatenate pandas DataFrames on columns, similar to outer merge

我有 3 个数据框,每个数据框的第一列都有日期。我想连接这些数据帧,但连接与每个数据帧的行值相关。如果值匹配,则在同一行添加,否则,我希望有一个 NaN。

import numpy as np
import pandas as pd

# Create the pandas DataFrame
df1 = pd.DataFrame(['2018-12-31','2019-09-30','2022-01-31'], columns = ['Date1'])
df2 = pd.DataFrame(['2019-09-30','2022-02-28'], columns = ['Date2'])
df3 = pd.DataFrame(['2019-09-30','2021-06-30','2021-11-30','2022-03-31'], columns = ['Date3'])

display(df1)
display(df2)
display(df3)

data = {'Date1': ['2018-12-31','2019-09-30',np.nan,np.nan,'2022-01-31',np.nan,np.nan],
        'Date2': [np.nan,'2019-09-30',np.nan,np.nan,np.nan,'2022-02-28',np.nan],
        'Date3': [np.nan,'2019-09-30','2021-06-30','2021-11-30',np.nan,np.nan,'2022-01-31']}

desired_df = pd.DataFrame(data)
desired_df

这就是我想要达到的目标。

Date1 Date2 Date3
0 2018-12-31 NaN NaN
1 2019-09-30 2019-09-30 2019-09-30
2 NaN NaN 2021-06-30
3 NaN NaN 2021-11-30
4 2022-01-31 NaN NaN
5 NaN 2022-02-28 NaN
6 NaN NaN 2022-01-31

我最初的想法是使用类似的东西:

pd.concat([df1,df2,df3], axis=1, join="outer")

但是,上面会产生类似的东西:

Date1 Date2 Date3
2018-12-31 2019-09-30 2019-09-30
2019-09-30 2022-02-28 2021-06-30
2022-01-31 NaN 2021-11-30
NaN NaN 2022-03-31

我们可以 set_index 使用日期(通过将 drop 参数设置为 False,我们不会丢失该列),然后 concat 水平:

out = (pd.concat([df.set_index(f'Date{i+1}', drop=False) 
                 for i, df in enumerate([df1, df2, df3])], axis=1)
       .sort_index().reset_index(drop=True))

输出:

        Date1       Date2       Date3
0  2018-12-31         NaN         NaN
1  2019-09-30  2019-09-30  2019-09-30
2         NaN         NaN  2021-06-30
3         NaN         NaN  2021-11-30
4  2022-01-31         NaN         NaN
5         NaN  2022-02-28         NaN
6         NaN         NaN  2022-03-31