python cassandra 驱动程序与副本具有相同的插入性能

python cassandra driver same insert performance as copy

我正在尝试对 Cassandra 使用 Python async 以查看是否可以比 CQL COPY 命令更快地将记录写入 Cassandra。

我的 python 代码如下所示:

from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement
cluster = Cluster(['1.2.1.4'])

session = cluster.connect('test')

with open('dataImport.txt') as f:
    for line in f:
        query = SimpleStatement (
            "INSERT INTO tstTable (id, accts, info) VALUES (%s) " %(line),
            consistency_level=ConsistencyLevel.ONE)
        session.execute_async (query)

但它给我的性能与 COPY 命令相同...大约 2,700 rows/sec...使用异步会更快吗?

我需要在 python 中使用多线程吗?只是阅读它,但不确定它如何适合这个...

编辑:

所以我在网上发现了一些我正在尝试修改但无法正常工作的东西...到目前为止我有这个..我还将文件分成 3 个文件到 /Data/toImport/目录:

import multiprocessing
import time
import os
from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement


cluster = Cluster(['1.2.1.4'])

session = cluster.connect('test')

def mp_worker(inputArg):
        with open(inputArg[0]) as f:
            for line in f:
                query = SimpleStatement (
                    "INSERT INTO CustInfo (cust_id, accts, offers) values (%s)" %(line),
                    consistency_level=ConsistencyLevel.ONE)
                session.execute_async (query)


def mp_handler(inputData, nThreads = 8):
    p = multiprocessing.Pool(nThreads)
    p.map(mp_worker, inputData, chunksize=1)
    p.close()
    p.join()

if __name__ == '__main__':
    temp_in_data = file_list
    start = time.time()
    in_dir = '/Data/toImport/'
    N_Proc = 8
    file_data = [(in_dir) for i in temp_in_data]

    print '----------------------------------Start Working!!!!-----------------------------'
    print 'Number of Processes using: %d' %N_Proc
    mp_handler(file_data, N_Proc)
    end = time.time()
    time_elapsed = end - start
    print '----------------------------------All Done!!!!-----------------------------'
    print "Time elapsed: {} seconds".format(time_elapsed)

但出现此错误:

Traceback (most recent call last):
  File "multiCass.py", line 27, in <module>
    temp_in_data = file_list
NameError: name 'file_list' is not defined

此 post A Multiprocessing Example for Improved Bulk Data Throughput 提供了提高批量数据摄取性能所需的所有详细信息。基本上有 3 种机制,可以根据您的用例和硬件进行额外的调整:

  1. 单进程(你的例子就是这种情况)
  2. 多处理单查询
  3. 多处理并发查询

批处理的大小和并发性是您必须自己考虑的变量。

它是这样工作的:

import multiprocessing
import time
import os
from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement



def mp_worker(inputArg):
        cluster = Cluster(['1.2.1.4'])
        session = cluster.connect('poc')


        with open(inputArg[0]) as f:
            for line in f:
                query = SimpleStatement (
                    "INSERT INTO testTable (cust_id, accts, offers) values (%s)" %(line),
                    consistency_level=ConsistencyLevel.ONE)
                session.execute_async (query)


def mp_handler(inputData, nThreads = 8):
    p = multiprocessing.Pool(nThreads)
    p.map(mp_worker, inputData, chunksize=1)
    p.close()
    p.join()

if __name__ == '__main__':
    temp_in_data = ['/toImport/part-00000', '/toImport/part-00001', '/toImport/part-00002']
    start = time.time()
    N_Proc = 3
    file_data = [(i,) for i in temp_in_data]

    print '----------------------------------Start Working!!!!-----------------------------'
    print 'Number of Processes using: %d' %N_Proc
    mp_handler(file_data, N_Proc)
    end = time.time()
    time_elapsed = end - start
    print '----------------------------------All Done!!!!-----------------------------'
    print "Time elapsed: {} seconds".format(time_elapsed)