OpenMP 并行化效率不高

OpenMP parallelization not efficient

我正在尝试使用 OpenMP 并行化此代码。

for(t_step=0;t_step<Ntot;t_step++) {
        // current row
        if(cur_row + 1 < Npt_x)     cur_row++; 
        else                        cur_row = 0;
        // get data from file which update only the row "cur_row" of array val
        read_line(f_u, val[cur_row]);
        // computes
        for(i=0;i<Npt_x;i++) {
            for(j=0;j<Npt_y;j++) {
                i_corrected = cur_row - i;
                if(i_corrected < 0)     i_corrected = Npt_x + i_corrected;
                R[i][j] += val[cur_row][0]*val[i_corrected][j]/Ntot;
            }
        }
    }


- val 和 R 声明为 **double,
- Npt_x 和 Npt_y 大约是 500,
- Ntot 大约是 10^6.

我已经做到了

for(t_step=0;t_step<Ntot;t_step++) {
        // current row
        if(cur_row + 1 < Npt_x)     cur_row++; 
        else                        cur_row = 0;
        // get data from file which update only the row "cur_row" of array val
        read_line(f_u, val[cur_row]);
        // computes
        #pragma omp parallel for collapse(2), private(i,j,i_corrected)
        for(i=0;i<Npt_x;i++) {
            for(j=0;j<Npt_y;j++) {
                i_corrected = cur_row - i;
                if(i_corrected < 0)     i_corrected = Npt_x + i_corrected;
                R[i][j] += val[cur_row][0]*val[i_corrected][j]/Ntot;
            }
        }
    }

问题是它似乎效率不高。在这种情况下,有没有办法更有效地使用 OpenMP?

非常感谢

现在,我会尝试这样的事情:

for(t_step=0;t_step<Ntot;t_step++) {
    // current row
    if(cur_row + 1 < Npt_x)
        cur_row++; 
    else
        cur_row = 0;
    // get data from file which update only the row "cur_row" of array val
    read_line(f_u, val[cur_row]);
    // computes
    #pragma omp parallel for private(i,j,i_corrected)
    for(i=0;i<Npt_x;i++) {
        i_corrected = cur_row - i;
        if(i_corrected < 0)
            i_corrected += Npt_x;
        double tmp = val[cur_row][0]/Ntot;
        #if defined(_OPENMP) && _OPENMP > 201306
        #pragma omp simd
        #endif
        for(j=0;j<Npt_y;j++) {
            R[i][j] += tmp*val[i_corrected][j];
        }
    }
}

但是,由于代码将受内存限制,因此不确定它是否会给您带来很大的并行加速...不过值得一试。