R(或Python)创建渐进分割的矩形树图

R (or Python) create a rectangle tree map with progressive segmentation

我想要一些关于如何解决这个有趣问题的想法(至少对我而言)。假设我有一个具有 3 个不同特征变量和一些定量评级的人群。示例如下:

df

   income expense education gender residence
1   153      2989 NoCollege      F       Own
2   289       872   College      F      Rent
3   551        98 NoCollege      M      Rent
4   286       320   College      M      Rent
5   259       372 NoCollege      M      Rent
6   631       221 NoCollege      M       Own
7   729       105   College      M      Rent
8   582       450 NoCollege      M       Own
9   570       253   College      F      Rent
10 1380       635 NoCollege      F      Rent
11  409       425 NoCollege      M      Rent
12  569       232 NoCollege      F       Own
13  317       856   College      M      Rent
14  199       283   College      F       Own
15  624       564 NoCollege      M       Own
16 1064       504 NoCollege      M       Own
17  821       169 NoCollege      F      Rent
18  402       175   College      M       Own
19  602       285   College      M      Rent
20  433       264   College      M      Rent
21  670       985 NoCollege      F       Own

我可以计算由 3 个特征变量定义的细分市场的支出收入比 (SIR):教育、性别和居住地。所以在第一层,没有做分割,SIR为:

df %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>>   count spending_ratio
   1    21           95.8

然后我将人口分成男性和女性组,得到:

df %>% group_by(gender) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100) 
>>   gender count spending_ratio
   1      F     8          138.0
   2      M    13           67.3

我们通过引入教育来继续这个过程:

df %>% group_by(gender, education) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>>   gender education count spending_ratio
   1      F   College     3          133.1
   2      F NoCollege     5          139.4
   3      M   College     6           72.4
   4      M NoCollege     7           63.9

最后添加 residence:

df %>% group_by(gender, education, residence) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>>  gender education residence count spending_ratio
  1      F   College       Own     1          142.2
  2      F   College      Rent     2          131.0
  3      F NoCollege       Own     3          302.2
  4      F NoCollege      Rent     2           36.5
  5      M   College       Own     1           43.5
  6      M   College      Rent     5           77.3
  7      M NoCollege       Own     4           59.9
  8      M NoCollege      Rent     3           73.4

我想要实现的是生成一个包含上述所有信息的 treemap-like plot。但正如您所见,树状图与我想要的相去甚远。我想要得到的是一个类似于顶部图像的地图,其中每个矩形的大小代表计数,颜色代表 SIR,并且包括树的所有级别。

非常感谢任何帮助。

您可以使用 treemap 包在不同级别进行聚合,但输出需要格式化很多。当 treemap 进行连续聚合时,它会删除 data.table 中的所有附加变量。因此,由于您的聚合函数需要额外的变量,我创建了一些虚拟变量。变量 'index' 用于从每个子集索引到 'expense' 和 'income'。这是你可以做到的,

library(treemap)
library(data.table)

## Some dummy variables to aggregate by: ALL, i, and index
dat <- as.data.table(df)[, `:=`(total = factor("ALL"), i = 1, index = 1:.N)][]
indexList <- c('total', 'gender', 'education', 'residence')  # order or aggregation

## Function to aggregate at each grouping level (SIR)
agg <- function(index, ...) {
    dots <- list(...)
    expense <- dots[["expense"]][index]
    income <- dots[["income"]][index]
    sum(expense) / sum(income) * 100
}

## Get treemap data
res <- treemap(dat, index=indexList, vSize='i', vColor='index',
               type="value", fun.aggregate = "agg",
               palette = 'RdYlBu',
               income=dat[["income"]],
               expense=dat[["expense"]])  # ... args get passed to fun.aggregate

## The useful variables: level (corresponds to indexList), vSize (bar size), vColor(SIR)
## Create a label variable that is the value of the variable in indexList at each level
out <- res$tm
out$label <- out[cbind(1:nrow(out), out$level)]
out$label <- with(out, ifelse(level==4, substring(label, 1, 1), label))  # shorten labels
out$level <- factor(out$level, levels=sort(unique(out$level), TRUE))     # factor levels

## Time to find label positions, scale to [0, 1] first
## x-value is cumsum by group,  y will just be the level
out$xlab <- out$vSize / max(aggregate(vSize ~ level, data=out, sum)$vSize)
split(out$xlab, out$level) <- lapply(split(out$xlab, out$level), function(x) cumsum(x) - x/2)

## Make plot
library(ggplot2)
ggplot(out, aes(x=level, y=vSize, fill=color, group=interaction(level, label))) +
  geom_bar(stat='identity', position='fill') +  # add another for black rectangles but not legend
  geom_bar(stat='identity', position='fill', color="black", show_guide=FALSE) +
  geom_text(data=out, aes(x=level, y=xlab, label=label, ymin=0, ymax=1), size=6, font=2,
            inherit.aes=FALSE) +
  coord_flip() +
  scale_fill_discrete('SIR', breaks=out$color, labels = round(out$vColor)) +
  theme_minimal() +  # Then just some formatting 
  xlab("") + ylab("") +
  theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank())

编辑

我认为它实际上对 SIR 的渐变颜色效果更好。为此,您只需将 fill=color 替换为 fill=vColor 并按一定的渐变比例填充。

## Make plot with gradient color for SIR
library(ggplot2)
ggplot(out, aes(x=level, y=vSize, fill=vColor, group=interaction(level, label))) +
  geom_bar(stat='identity', position='fill') +  # add another for black rectangles but not legend
  geom_bar(stat='identity', position='fill', color="black", show_guide=FALSE) +
  geom_text(data=out, aes(x=level, y=xlab, label=label, ymin=0, ymax=1), size=6, font=2,
            inherit.aes=FALSE) +
  coord_flip() +
  scale_fill_gradientn(colours = c("white", "red")) +
  theme_minimal() +  # Then just some formatting 
  xlab("") + ylab("") +
  theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank())