使用 Spark DataFrame 发展模式

Evolving a schema with Spark DataFrame

我正在使用 Spark 数据框,它可以从三种不同的模式版本之一加载数据:

// Original
{ "A": {"B": 1 } }
// Addition "C"
{ "A": {"B": 1 }, "C": 2 }
// Additional "A.D"
{ "A": {"B": 1, "D": 3 }, "C": 2 }

我可以通过检查架构是否包含字段 "C" 来处理额外的 "C",如果不包含则向数据框添加新列。但是我不知道如何为子对象创建一个字段。

public void evolvingSchema() {
    String versionOne = "{ \"A\": {\"B\": 1 } }";
    String versionTwo = "{ \"A\": {\"B\": 1 }, \"C\": 2 }";
    String versionThree = "{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }";

    process(spark.getContext(), "1", versionOne);
    process(spark.getContext(), "2", versionTwo);
    process(spark.getContext(), "2", versionThree);
}

private static void process(JavaSparkContext sc, String version, String data) {
    SQLContext sqlContext = new SQLContext(sc);
    DataFrame df = sqlContext.read().json(sc.parallelize(Arrays.asList(data)));
    if(!Arrays.asList(df.schema().fieldNames()).contains("C")) {
        df = df.withColumn("C", org.apache.spark.sql.functions.lit(null));
    }
    // Not sure what to put here. The fieldNames does not contain the "A.D"

    try {
        df.select("C").collect();
    } catch(Exception e) {
        System.out.println("Failed to C for " + version);
    }
    try {
        df.select("A.D").collect();
    } catch(Exception e) {
        System.out.println("Failed to A.D for " + version);
    }
}

JSON 源不太适合具有不断发展的模式的数据(Avro 或 Parquet 怎么样)但简单的解决方案是对所有源使用相同的模式并使新字段可选/可为空:

import org.apache.spark.sql.types.{StructType, StructField, LongType}

val schema = StructType(Seq(
  StructField("A", StructType(Seq(
    StructField("B", LongType, true), 
    StructField("D", LongType, true)
  )), true),
  StructField("C", LongType, true)))

您可以像这样将 schema 传递给 DataFrameReader:

val rddV1 = sc.parallelize(Seq("{ \"A\": {\"B\": 1 } }"))
val df1 = sqlContext.read.schema(schema).json(rddV1)

val rddV2 = sc.parallelize(Seq("{ \"A\": {\"B\": 1 }, \"C\": 2 }"))
val df2 = sqlContext.read.schema(schema).json(rddV2)

val rddV3 = sc.parallelize(Seq("{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }"))
val df3 = sqlContext.read.schema(schema).json(rddV3)

您将获得独立于变体的一致结构:

require(df1.schema == df2.schema && df2.schema == df3.schema)

缺少列自动设置为 null:

df1.printSchema
// root
//  |-- A: struct (nullable = true)
//  |    |-- B: long (nullable = true)
//  |    |-- D: long (nullable = true)
//  |-- C: long (nullable = true)

df1.show
// +--------+----+
// |       A|   C|
// +--------+----+
// |[1,null]|null|
// +--------+----+

df2.show
// +--------+---+
// |       A|  C|
// +--------+---+
// |[1,null]|  2|
// +--------+---+

df3.show
// +-----+---+
// |    A|  C|
// +-----+---+
// |[1,3]|  2|
// +-----+---+

:

此解决方案依赖于数据源。它可能适用于也可能不适用于其他来源,或 .

zero323 已回答问题,但在 Scala 中。这是同一件事,但在 Java.

public void evolvingSchema() {
    String versionOne = "{ \"A\": {\"B\": 1 } }";
    String versionTwo = "{ \"A\": {\"B\": 1 }, \"C\": 2 }";
    String versionThree = "{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }";

    process(spark.getContext(), "1", versionOne);
    process(spark.getContext(), "2", versionTwo);
    process(spark.getContext(), "2", versionThree);
}

private static void process(JavaSparkContext sc, String version, String data) {
    StructType schema = DataTypes.createStructType(Arrays.asList(
            DataTypes.createStructField("A",
                    DataTypes.createStructType(Arrays.asList(
                            DataTypes.createStructField("B", DataTypes.LongType, true),
                    DataTypes.createStructField("D", DataTypes.LongType, true))), true),
            DataTypes.createStructField("C", DataTypes.LongType, true)));

    SQLContext sqlContext = new SQLContext(sc);
    DataFrame df = sqlContext.read().schema(schema).json(sc.parallelize(Arrays.asList(data)));

    try {
        df.select("C").collect();
    } catch(Exception e) {
        System.out.println("Failed to C for " + version);
    }
    try {
        df.select("A.D").collect();
    } catch(Exception e) {
        System.out.println("Failed to A.D for " + version);
    }
}